
RL-TR-96-118
Final Technical Report
July 1996

SIMS: SINGLE INTERFACE TO
MULTIPLE SOURCES

University of Southern California

Sponsored by
Advanced Research Projects Agency 19961016 088

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

«nC QUALITY INSHSCEED *

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the U.S. Government.

Rome Laboratory
Air Force Materiel Command

Rome, New York

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR-9 6-118 has been reviewed and is approved for publication.

(j^ayioöytd/rl- OCu^u.
APPROVED:

RAYMOND A. LIUZZI
Project Engineer

FOR THE COMMANDER 'Jtwuue4#
JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Division

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
(C3CA), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

SIMS: SINGLE INTERFACE TO MULTIPLE SOURCES

Yigal Arens
Craig A. Knobloch

Chin Y. Chee
Chunnan Hsu

Contractor: University of Southern California
Contract Number: F30602-91-C-0081
Effective Date of Contract: 08 July 1991
Contract Expiration Date: 02 February 1995
Short Title of Work: SIMS: Single Interface to

Multiple Sources
Period of Work Covered: Jul 91 - Mar 95

Principal Investigator: Yigal Arens
Phone: (310) 822-1511

RL Project Engineer: Raymond A. Liuzzi
Phone: (315) 330-3528

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by Raymond A. Liuzzi, RL/C3CA, 525 Brooks Rd,
Rome NY 13441-4505.

REPORT DOCUMENTATION PAGE form Approved
OMB No. 0704-0188

t\t*:ioairqixj&r><3 nna&xQant* tigervxi<» MdiMmltaj^rt^ i Tu sm nafxrm, n*jdngr*»rafar rwvarqraeuttma, innig »MU U an mxtvm,
B^hrnq and mart« tig r» aa»machet rxi mumn rd Hi*w<ir»cdbatan erf »fmiMlun fand mini» u nqw»g»■ Budn MPTT» a yy arwMPKtcf r*

1. AGENCY USE ONLY &**" Blank) Z REPORT DATE

July 1996

a REPORT TYPE AND 0ATES COVERED

Final Jul 91 - Dec 95
4. TITLE AN0 SUBTITLE

SIMS: SINGLE INTERFACE TO MULTIPLE SOURCES

9. AUTHOR(S)

Yigal Arens, Craig A. Knobloch, Chin Y. Chee, and
Phnnnan Hsn

& FUNDWG NUMBERS

C - F30602-91-C-0081
PE - 62301E
PR - 5581
TA - 20
WU - 46

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina Del Ray CA 90292

ft SPONSC«rKVKK>NäTOnNG AGENCY NAME(S) AND ADORESS«ES)
Advanced Research Projects Agency
3701 North Fairfax Drive Rome Laboratory (C3CA)
Fairfax VA 22203-1714 525 Brooks Rd

Rome NY 13441-4505

a PERFORMING ORGANIZATION
REPORTNUMBER

N/A

IG SPONSORlNG/MONfTORING
AGENCY REPORT NUMBER

RL-TR-96-118

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Raymond A. Liuzzi/C3CA/(315)330-3528

12a OöTRBUnON/AVAlABUTY STATEMENT

Approved for" public release; distribution unlimited.

12b. DWTRSUnON COOE

1 a ABSTRACT?'«*™« »«en*

With the current explosion of data, retrieving and integrating information from various
sources is a critical problem. This report describes work performed at USC/ISI, aimed
at developing a general and extensible approach to this problem. The SIMS approach
exploits a semantic model of a problem domain to integrate the information from
various sources, i.e., databases and knowledge bases. The domain and the information
sources are modeled. Queries submitted to SIMS are mapped into a set of queries to
individual information sources. The set of queries is then further optimized, using
knowledge, about the domain and the information sources. The data obtained is then
returned to the user. SIMS utilizes techniques from the areas of knowledge
representation, planning, and learning.

14. SUBJECT TERMS

Distributed databases, Learning, Multidatabase, Planning, SIMS

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSnCATION
Of THSPAGE
UNCLASSIFIED

1ft SECURITY CLASSFICATtON
OF ABSTRACT
UNCLASSIFIED

11 NUMBER Of PAGES
140

itpncecooe

2d LMTATION OF ABSTRACT

UL

' atmäOf ANSiSia :»•!
IB

Contents

Abstract 4

Overview and Summary of SIMS 5
1 Introduction 5

1.1 Technological Infrastructure 7
1.2 Overview of SIMS 8

Retrieving and Integrating Data from Multiple Information Sources 11
1 Introduction 11
2 Domain and Information Source Models . 11

2.1 Modeling Information Sources 11
2.2 Modeling the Domain 12
2.3 Scalability and Expandability 13

3 Selecting Information Sources 14
3.1 Reformulation Operations 14
3.2 The Reformulation Process 16
3.3 Caching Retrieved Data 17

4 Access Planning 17
4.1 Generating an Access Plan 17
4.2 Subquery Formation 19

5 Query-Plan Reformulation 19
5.1 Reformulation of Subqueries 21
5.2 Reformulation of Query Plans 23
5.3 Experimental Results of Reformulation 25

6 The SIMS Interface 26
6.1 The Query Interface 27
6.2 The Model Building Interface 27

7 Conclusions 27

Generating Parallel Execution Plans with a Partial-Order Planner 29
1 Introduction . . 29
2 Executing Actions in Parallel 29
3 Parallel Execution Plans 30

3.1 Independent Actions 30
3.2 Independent Actions Relative to a Goal 31
3.3 Independent Subplans Relative to a Goal 31
3.4 Interacting Actions 32

4 Parallel Execution Planning in UCPOP 33
5 Parallel Query Access Plans 34
6 Related Work 34
7 Discussion • • 35

1/2

4 Reformulating Query Plans For Multidatabase Systems 36
1 Introduction 36
2 Query Planning 37
3 Subquery Reformulation 38
4 Query Plan Reformulation 41
5 Experimental Results 43
6 Related Work 44
7 Conclusion 45

5 Rule Induction for Semantic Query Optimization 47
1 Introduction 47
2 Semantic Query Optimization 48
3 Overview of the Learning Approach 49
4 Learning Alternative Queries 51

4.1 Constructing and Evaluating Candidate Constraints 52
4.2 Searching the Space of Candidate Constraints 53

5 Experimental Results 54
6 Related Work 55
7 Conclusions and Future Work 56

Attachment: The SIMS Manual 61

Abstract

With the current explosion of data, retrieving and integrating information from various sources is a
critical problem. This report describes work performed at USC/ISI, aimed at developing a general and
extensible approach to this problem. The SIMS approach exploits a semantic model of a problem domain
to integrate the information from various sources — databases and knowledge bases. The domain and the
information sources are modeled. Queries submitted to SIMS are mapped into a set of queries to individual
information sources. The set of queries is then further optimized, using knowledge about the domain and
the information sources. The data obtained is then returned to the user. SIMS utilizes techniques from the
areas of knowledge representation, planning, and learning.

This report is structured as follows. Chapter 1 is devoted to overviews, first of the technological infras-
tructure used by SIMS, and then of the operation of the SIMS system itself. Chapter 2 follows with a more
detailed description of the SIMS system. Subsequent Chapters provide more details about various specific
aspects of SIMS' operation. Specifically, Chapter 3 describes SIMS' planner, Chapter 4 describes SIMS'
semantic query optimization techniques, and Chapter 5 describes the learning process used to obtain query
optimization rules. We conclude with an appendix, a tutorial describing how to set up a SIMS system to
access new information sources.

Authorship of this report: this report was written by Yigal Arens, Chin Y. Chee, Chunnan Hsu,
and Craig A. Knoblock. Chunnan Hsu's work as a Graduate Research Assistant was supported in part by
National Science Foundation grant No. IRI-9313993.

Chapter 1

Overview and Summary of SIMS

1 Introduction

Most tasks performed by users of complex information systems involve interaction with multiple information
sources.1 Examples can be found in the areas of analysis (e.g., of intelligence data or logistics forecasting) and
in resource planning and briefing applications. Retrieval of desired information dispersed among multiple
sources requires general familiarity with their contents and structure, with their query languages, with their
location on existing networks, and more. The user must break down a given retrieval task into a sequence of
actual queries to information sources, and must handle the temporary storing and possible transformation
of intermediate results — all this while satisfying constraints on reliability of the results and the cost of the
retrieval process. With a large number of information sources, it is difficult to find individuals who possess
the required knowledge, and automation becomes a necessity.

SIMS2 accepts queries in the form of a description of a class of objects about which information is desired.
This description is composed of statements in the Loom knowledge representation language (Section 1.1).
The user is not presumed to know how information is distributed over the data- and knowledge bases to
which SIMS has access — but he/she is assumed to be familiar with the application domain, and to use
standard terminology to compose the Loom query. The interface enables the user to inspect the domain
model as an aid to composing queries. SIMS proceeds to reformulate the user's query as a collection of more
elementary statements that refer to data stored in available information sources. SIMS then creates a plan for
retrieving the desired information, establishing the order and content of the various plan steps/subqueries.
Using knowledge about the contents and structure of information sources, SIMS reformulates the plaji to
minimize its expected execution time. The resulting plan is then executed by performing local data manipu-
lation and/or passing subqueries to the LIM system (Section 1.1), which generates the final translation into
database queries in the appropriate language(s). A graphical user interface enables the user to inspect the
plan in its various stages and to supervise its execution.

The SIMS project applies a variety of techniques and systems from Artificial Intelligence to build an
intelligent interface to information sources. SIMS builds on the following ideas:

Knowledge Representation/Modeling, which is used to describe the domain about which information is
stored in the information sources, as well the structure and contents of the information sources themselves.
The domain model is a declarative description of the objects and activities possible in the application domain
as viewed by a typical user. The model of each information source indicates the data-model used, query
language, network location, size estimates, update frequency, etc., and describes the contents of its fields in
terms of the domain model. The user formulates queries using terms from the application domain, without
needing to know anything about specific information sources. SIMS' models of different information sources

1 By the term information source we refer to any system from which information can be obtained. SIMS currently deals
with Oracle databases and Loom knowledge bases.

2 Services and Information Management for decision Systems. Subsequent to the period this report covers, the acronym
was changed to stand for Single Interface to Multiple Sources.

are completely independent, greatly easing the process of incorporating new information sources into the
system.

Planning/Search, which is used to construct a sequence of queries to individual information sources that
will satisfy the user's query. A planner is used in an initial reformulation step that selects the information
sources to be used in answering a query. It is also used to order the queries to the individual information
sources, select the location for processing the intermediate data, and determine which queries can be executed
in parallel.

Reformulation/Learning. SIMS considers alternative information sources and queries to them to retrieve
the desired information. This search for more efficient query formulations is guided by the detailed semantics
provided by the application domain model. Additional knowledge about the contents of the information
sources may be learned from the databases and used to reformulate the queries.

An initial prototype incorporating many features of the SIMS approach has been built and applied to
the domain of transportation planning — organizing the movement of personnel and materiel from one
geographic location to another using available transportation facilities and vehicles [5]. An earlier prototype
was applied to information needed for daily Naval briefings given in Hawaii about the status of the Pacific
Fleet [3]. The system currently has access to nine Oracle databases and a Loom knowledge base with
information about ships, ports, locations, relevant activities, etc. SIMS is controlled via a graphical user
interface. It is written in Common Lisp and uses CLIM for its graphics.

There has been some work on the problem of accessing information distributed over multiple sources
both in the Al-oriented database community and in the more traditional database community. Work in
heterogeneous distributed databases includes the MULTIBASE, MERMAID, NDMS, IISS, IMDAS, ADDS,
PRECI* and MRDSM systems. A survey and comparison of these can be found in [44]. Of these systems, only
the first four attempt to support total integration of all information sources in the sense that SIMS provides.
SIMS is distinguished from work in this community in that a complete semantic model of the application
domain is created in a state-of-the-art knowledge representation language with powerful reasoning facilities.
The model provides a collection of terms with which to describe the contents of (i.e., to create semantic
models of) available information sources — and these include knowledge bases in addition to databases.
Furthermore, a sophisticated planning mechanism is used at run-time in order to determine the potentially
very complex relationship between the collection of information requested by the user and the data available
from the various sources. In contrast to previous work, the domain model in SIMS is neither specific to a
particular group of information sources, nor is there necessarily a direct mapping from the concepts in the
model to the objects in the information sources. Our approach thus provides a much more flexible and easily
extensible interface to a possibly changing collection of information sources.

The Al-oriented database community has done work on various aspects of using a knowledge base to
integrate a variety of information sources. The Carnot project [16] integrates heterogeneous databases using
a set of articulation axioms that describe how to map between SQL queries and domain concepts. Carnot
uses the Cyc knowledge base [29] to build the articulation axioms, but after the axioms are built the domain
model is no longer used or needed. In contrast, the domain model in SIMS is an integral part of the system,
and allows SIMS to both combine information stored in the knowledge base and to reformulate queries.
Illarramendi et al. [8, 24] present an approach to automatically integrating knowledge-base models from
individual relational database Schemas. In SIMS, the integration of the database models is not automated,
although the translation of the individual database Schemas into knowledge-base models is automated by
the LIM system, which is used by SIMS. Elements of the approach described in that work can be applied
to further automating the process of database modeling in SIMS. Finally, Papazoglou et al. [39] present a
framework for intelligent information systems where, like SIMS, an explicit knowledge model is an integral
part of an intelligent information agent.

Some additional related research has been performed by those working on semantic and object-oriented
data models, e.g., [13, 23, 55]. Since they are interested in constructing a single DBMS, however, they take
an almost diametrically opposed view of the problem from that of SIMS. While SIMS attempts to preserve
its independence from the data models of the constituent data- and knowledge-bases, using a planner to
bridge this gap at query time, they attempt to closely integrate the given data model into their DBMS.

6

(db-retrieve (?depth)
(:and (port ?port)

(port.name ?port "SAN-DIEGO")
(port.depth ?port Tdepth)))

Figure 1.1: Example SIMS/Loom Query

1.1 Technological Infrastructure

This subsection is provided for readers who may not be familiar with the systems underlying SIMS. A general
understanding of Loom, LIM, and planners like Prodigy is assumed in the rest of this chapter.

Loom

Loom serves as the knowledge representation system SIMS uses to describe the domain model and the
contents of the information sources, as well as serving as an information source in its own right. It provides
both a language and an environment for constructing intelligent applications. Loom combines features of
both frame-based and semantic network languages, and provides some reasoning facilities. As a knowledge
representation language it is a descendent of the KL-ONE [9] system.

The heart of Loom is a powerful knowledge representation system, which is used to provide deductive
support for the declarative portion of the Loom language. Declarative knowledge in Loom consists of
definitions, rules, facts, and default rules. A deductive engine called a classifier utilizes forward-chaining,
semantic unification and object-oriented truth maintenance technologies in order to compile the declarative
knowledge into a network designed to efficiently support on-line deductive query processing. For a detailed
description of Loom see [30, 3l].

To illustrate both Loom and the form of SIMS' queries, consider Figure 1.1, which contains a simple
semantic query to SIMS. This query requests the value of the depth of the San Diego port. The three
subclauses of the query specify, respectively, that the variable ?port describes a member of the model
class port, that the relation port.name holds between the value of ?port and the string SAH-DIEGO, and
that the relation port, depth holds between the value of ?port and the value of the variable 'depth. The
semantic query specifies that the value of the variable ?depth be returned. A query to SIMS need not
necessarily correspond to a single database query, since there may not exist one database that contains all
the information requested.

LIM

In Loom the members of a class (e.g., the possible values of the variable ?port in the expression in Figure 1.1)
are instances in the knowledge base. In the case of large-sized realistic domains it is preferable not to define
all objects of the domain as knowledge base instances. Instead, databases provide more efficient structures for
organizing large numbers of such objects, and DBMSs are more efficient than AI languages for manipulating
them.

The Loom Interface Module (LIM) [33] is being developed by researchers at Paramax Systems Corp.
to mediate between Loom and databases. LIM reads an external database's schema and uses it to build
a Loom representation of the database. The Loom user can then treat classes whose instances are stored
in a database as though they contained "real" Loom instances. Given a Loom query for information in
that class, LIM automatically generates a query in the appropriate database query language to the database
that contains the information, and returns the results as though they were Loom instances. However, LIM
focuses primarily on the issues involved in mapping a semantic query to a single database. After SIMS has
planned a query and formed subqueries, each grounded in a single database, it hands the subqueries to LIM
for the actual data retrieval. SIMS handles direct queries to the Loom knowledge base on its own.

Prodigy

The two problems of selecting information sources and ordering queries can be easily cast as planning
problems. SIMS uses Prodigy [ll, 37], a means-ends analysis planner, to solve both these problems. Prodigy

has an expressive operator and control language and has been linked to Loom, so that it can use the Loom
domain model as its model of the world. SIMS formulates the selection of information sources and the
ordering of queries as planning problems and hands them off to Prodigy.

A problem is specified in Prodigy by giving the system a set of operators that define the legal operations
on a problem and an initial state description that defines the current state of the world. The system is then
given a goal, which in this case is the query to be answered, and Prodigy generates a sequence of operators
that transforms the initial state into a state in which the goal is satisfied.

Prodigy is used for solving the planning problems in SIMS for two main reasons. First, it provides an
expressive language for both defining the problem and constructing a set of rules to control the search.
Second, it provides a natural framework for planning the operations and monitoring the execution of those
operations. In the case of failures, the failure points are easily identified and the system can return to the
planner to select an alternative plan for retrieving the data.

1.2 Overview of SIMS

SIMS addresses several problems that arise when one tries to provide a user familiar only with the general
domain with access to a system composed of numerous separate data- and knowledge-bases.

Specifically, SIMS deals with the following:

• Determining which information sources contain the data relevant to the knowledge-base classes used
in formulating a given query.

• For those classes mentioned in the query which appear to have no matching information source, deter-
mining if any knowledge encoded in the domain model (such as relationship to other classes) permits
reformulation in a way that will enable suitable information sources to be identified.

• Creating a plan, a sequence of subqueries and other forms of data-manipulation that when executed
will yield the desired information.

• Using knowledge about databases to optimize the plan.

• In general, providing a uniform way to describe information sources to the system, so that data in
them is accessible.

A visual representation of the components of SIMS is provided in Figure 1.2.3

An initial Loom query of the kind SIMS handles is shown in Figure 1.3. The first clause,
(rail-port ?port), is a concept expression that constrains the variable ?port to a set of port objects
in the knowledge base. The Loom class rail-port (standing for sea ports with rail facilities) need not
necessarily correspond to the contents of a specific field in some single information source. If it does not,
the planner will have to find some combination of subqueries that will obtain all necessary objects. This
case is discussed further later. The second clause is a relation expression that states that the port. ref rig
relation holds between fillers of the variables ?refrig and ?port. This clause will bring about the retrieval
of possible fillers of ?ref rig — refrigeration facilities in a relevant port. The third clause is a constraint:
a ">" relation on the number of refrigeration facilities, requiring it to be a positive integer. The entire
query requests the names of all ports with rail facilities and refrigeration facilities whose geographic code
designation indicates that they are in Germany.

A fragment of the model describing some of the hierarchy of concepts relevant to this query is presented
in Figure 2.2. In this figure, the circles denote concepts in the knowledge base, the upward arrows indicate
is-a links, and the other arrows indicate relations between concepts. So, for example, the Port concept has
two subconcepts, Sea_Port and Air_Port, and Sea-Port has a subconcept Rail-Port, seaports with a railway
capability. Shaded concepts represent those that can be retrieved directly from some database.

If the information about rail ports and geographic locations were stored directly in the Loom knowledge
base, then Loom could be used directly to answer this query. But, as the figure indicates, that is note the

3 Work on the links back from the Execution component to Information Source Selection and Access Planning will not be
discussed in this chapter.

8

User's
Query

Information
Source

Selection

Access
Planning

Query-Plan
Reformulation Execution -Output

Learning

Figure 1.2: SIMS Overview Diagram.

(retrieve (?name)
(:and (rail-port ?port)

(port.refrig ?port ?refrig)
(> ?refrig 0)
(port.geocode ?port ?geocode)
(port.name ?port ?name)
(geoloc ?geoloc)
(geoloc.country -name ?geoloc "Germany")
(geoloc.geocode ?geoloc ?geocode)))

Figure 1.3: Example SIMS Query.

case. SIMS uses Loom to semantically model a domain about which data is stored in multiple information
sources, and the information required to answer this query will be retrieved from the appropriate sources,
with the help of LIM where necessary. Thus, if all the referenced information were stored in one database,
this query could be passed directly to LIM as is. But that is not the case either.

Data pertaining to this query is spread over two databases — one containing information about ports
and the other containing information about geographic locations. The system is handed the query shown
in Figure 1.3 and it must first determine which information sources to access. Then it formulates a set of
subqueries that can be executed directly by either LIM or Loom to derive the desired result. SIMS can
use LIM to return intermediate results, which can then be processed further in Loom. As we will see,
the execution of the example query will require three subqueries. One to each of the databases and one to
combine the intermediate results obtained from them. The processes described in overview here are discussed
in more depth in the remaining sections of the chapter.

The very first step in processing a query is to determine where the requested data resides. For instance,
inspecting the model fragment in Figure 2.2 reveals that rail-port does not have a directly corresponding
database (a shaded concept). However, the model relation port.rail can be used to distinguish it from
other ports. Specifically, it can identify the desired ports from among those in sea_port, which does have a
corresponding database. This and other reformulations of this nature are described further in Section 3.

The next step in processing the query is to produce a plan to implement the required retrieval. By this we
mean that SIMS must produce a plan consisting of data-retrieval and data-manipulation specifications, with
an associated partial ordering of the specified actions. The data-retrieval steps of the plan must be grounded

9

in specific information sources, i.e., all data one step requests must be contained in a single information
source. Any data-manipulation steps of the plan are performed using the Loom reasoning facilities. The
plan produced takes the form of a lattice of plan steps.

The steps in a plan are partially ordered based on the structure of the query. This ordering is determined
by the fact that some steps make use of data that is obtained by other steps, and thus must logically be
considered after them. For example, a plan step may compare two stems of data according to some measure.
If the data are obtained from two different information sources, then the comparison must come later than
the retrievals of the data items.

Next, the plan produced as above is inspected and, when appropriate, data-retrieval steps that are
grounded in the same information source are grouped — eventually their execution will result in a single
query. We therefore call this process subquery formation. The result of this grouping process is a new graph
in which each node ultimately corresponds either to a query to some information source, or to internal
manipulation by SIMS of data so acquired. The processes involved in subquery formation is described in
Section 4.

After a plan for the query has been obtained, the system reformulates the query plan into a less expensive
yet semantically equivalent plan. The reformulation is based on logical inference from content knowledge
about each of the queried databases. The cost reduction from the reformulated plan is due to the reduction
in the amount of the intermediate data and the refinement of each subquery. This reformulation process is
described in Section 5.

10

Chapter 2

Retrieving and Integrating Data
from Multiple Information Sources

1 Introduction
This chapter provides a general description of SIMS, in greater detail. We begin with a discussion of
our approach to modeling, follow with descriptions of SIMS' planning and reformulation components, and
conclude with a description of a demonstration interface to SIMS.

2 Domain and Information Source Models
SIMS must reason about data and other knowledge stored in a variety of locations and formats. It is
imperative that SIMS have available detailed descriptions of the various information sources to which it has
access. This is not merely an artifact of the SIMS approach — no system can retrieve requested information
if it does not have knowledge about where the information in question may be stored and how to go about
accessing it.

In SIMS a model of each information sources is created to describe it to the system. In addition, a
domain model is constructed to describe objects and actions that are of significance in the performance of
tasks in the application domain.1 The domain model's collection of terms forms the "vocabulary" used to
characterize the contents of an information sources.

It is important to note that the models of different information sources are independent of each other.
This greatly simplifies the task of modeling, and at the same time enables new components to be added to
SIMS without the need for any recompilation process. The planner simply makes use of the new information
as appropriate.

2.1 Modeling Information Sources

For each information source, SIMS' model must include every fact that can influence decisions concerning
when and whether to utilize it.

• In order to decide whether a query to LIM is necessary or whether processing can be performed locally,
the model specifies if the source is a database or a Loom knowledge base (the two types of information
sources currently supported);

• In order to decide whether to expend effort reformulating plans and whether to be concerned with the
cost of transmitting intermediate data, the model describes the size of databases and tables, and their
location;

1 In fact, all the knowledge described here is stored by SIMS in a single model defined in a uniform way. It is thus only for
purposes of exposition that we describe different parts of the model as "separate" models.

11

AFSC Database

SEAPORT Table

PORT.NAME | GLC.CD
1

CRANES.
SHORE

CRANES.
FLOATING

. . . i

1

•

• i

cranes.floating

crane*.shore

Figure 2.1: A Model of a Database Table Embedded in the Domain Model.

• In order to help further with decisions concerning reformulation, the model defines key columns in the
database, if such exist; and, finally,

• In order to enable SIMS to determine in which information source desired information resides, the
model describes the content of the information source.

In fact, most of the modeling effort done for SIMS goes to describing the content of databases. These
models are used by both LIM and SIMS, for their own respective purposes (cf. [33] for LIM's work on
database modeling). Simply put, the model of a database must describe precisely what type of information
is stored in it. To do so we choose a key column (or columns) in each table and create a Loom class
corresponding to it — the class from which items in that column are drawn. Every other column in the
table is viewed as corresponding to a Loom relation — one describing the relationship between the key item
and the one in that column. Figures 2.1 provides a simple illustration of content modeling.

2.2 Modeling the Domain

SIMS deals with a single "application domain", i.e., with organizing the retrieval of information relevant
to some coherent collection of tasks. Currently, the application domain we have selected is the military
transportation planning domain — tasks involving the movement of personnel and materiel from one location
to another using aircraft, ships, trucks, etc.

SIMS' model of the application domain includes a hierarchical terminological knowledge base with nodes
representing all objects, actions, and states possible in the domain. In addition, it includes indications of all
relationships possible between nodes in the model. For example, there is a node in the model representing
the class of ports and a node representing the class of geographic location codes. There is a relation specified
between ports and geoloc codes with a notation indicating that each of the former has precisely one of
the latter.

The Loom knowledge representation language is used to describe SIMS' domain model. Statements in
Loom are used to express more elaborate relationships among model entities, such as that rail-ports are
sea-ports which have a rail terminal as well (cf. Figure 2.2).2

2
 We have chosen simple examples for use in this chapter. Loom supports far more powerful statements. For a full description

see [30, 3l].

12

The entities included in the domain model are not meant to correspond to any objects described in any
particular database. The domain model is intended to be a description of the application domain from the
point of view of someone who needs to perform real-world tasks in that domain and/or to obtain information
about it. However, the domain model is used, effectively, as the language with which to describe the contents
of a database to SIMS. This is done by including relations — hierarchical (is-a) or others — to precisely
describe every aspect of the contents of the database in terms of the domain model (cf. Section 2.1). In
order to submit a query to SIMS, the user composes a Loom statement, using terms and relations in the
domain model to describe the precise class of objects that are of interest. If the user happens to be familiar
with particular databases and their representation, those concepts and relations may be used as well. But
such knowledge is not required. SIMS is designed precisely to allow users to query it without such specific
knowledge of the data's structure and distribution.

The task of accurately relating a database (and other information source) model must be engaged in
for every database and knowledge base that SIMS is to be capable of utilizing. SIMS includes a graphical
interface that simplifies this process (Section 6).

The modeling work that is a prerequisite for SIMS to be able to access information sources is a substantial
effort, the importance of which cannot be over-emphasized. The extent to which SIMS can find information
and the accuracy of its retrievals are completely dependent on it. The scalability of the modeling process in
SIMS is discussed next.

2.3 Scalability and Expandability

SIMS' dependence on models of the domain and the information sources it utilizes requires that the question
of its scalability be addressed. Separate issues arise when considering the application domain model and the
information resource models.

Expanding the Application Domain Model

A considerable effort must be expended to model the application domain before any use of SIMS is possible.
Although this task's extent should not be minimized, it is a relatively tractable one no different than that
engaged in in many other areas of artificial intelligence. In fact, it has more clearly defined limits, since full
utility is possible from the moment that enough of the model has been built to cover data objects described
in desired databases. Any model building beyond that point only increases the expressivity of the query
language and adds to the user's convenience, but it still provides access to the same data.

It is reasonable to anticipate that the domain model will have to be incrementally enlarged to accom-
modate new data sources as they are added to the system. However, since SIMS is designed to handle one
domain at a time, it can safely be assumed that this modeling effort will gradually reach closure.

Adding Information Source Models

Additional modeling will have to be engaged in for every new information source added to SIMS. While
this need will remain constant as the system grows, the SIMS approach greatly limits the required effort
compared to what it potentially might be. Obviously, no approach to this problem can avoid modeling
information sources, since without a complete description of the content of a database or knowledge base it
is simply impossible to intelligently decide whether or not to attempt to retrieve desired information from
it. However, SIMS allows one to model a new information source independently of any that are already
incorporated into the system. There is no need to try to anticipate interactions or overlaps between different
information sources, to decide how joins over databases will be performed, etc., since all such decisions are
made at run time by the SIMS planner.

To further simplify any modeling that does have to be performed, the SIMS project includes an ongoing
effort to develop modeling aids, among them a graphical Loom knowledge base builder (see Section 6).

13

portname por(jJSrtrefrig

Figure 2.2: Fragment of Domain Model

3 Selecting Information Sources

The first step in answering a query expressed in the terms of the domain model is to select the appropriate
information sources. This is done by mapping from the concepts in the domain model to the concepts in
the database models that correspond directly to database information. If the user requests information
about ports and there is a database concept that contains ports, then the mapping is straightforward.
However, in many cases there will not be a direct mapping. Instead, the original domain-model query must
be reformulated in terms of concepts that correspond to database concepts.

Consider the fragment of the knowledge base shown in Figure 2.2, which covers the knowledge relevant
to the example query in Figure 1.3. The concepts Sea_Port, Air.Port, and Geoloc have subconcepts shown
in by the shaded circles that correspond to concepts whose instances can be retrieved directly from some
database. Thus, the AFSC database contains information about both seaports and airports and the PACF
database contains information about only seaports. Thus, if the user asks for seaports, then it must be
translated into one of the database concepts — AFSC_Sea_Port or PACFJ3ea_Port. If the user asks for
rail-ports, then it must first be translated into a request for sea.ports by augmenting the original query with
a constraint that each port must have a railroad capability.

In addition to retrieving data from the databases, data can also be stored in and retrieved from the Loom
knowledge base. This knowledge base is simply treated as another information source. However, the Loom
KB has the added advantage that information from database queries can be cached in it and the model can
be updated to indicate what information has been stored in Loom.

In this section, we describe the set of problem reformulation operations3 that are implemented in SIMS
and the reformulation process used to transform a user's query into one that can be used to retrieve data
We also describe how this reformulation mechanism supports the catching and retrieval of data in Loom.

3.1 Reformulation Operations

In order to select the information sources for answering a query, SIMS applies a set of reformulation operators
to transform the domain-level concepts into concepts that can be retrieved directly from databases. The sys-
tem uses four operators: Select-Database, Generalize-Concept, Specialize-Concept, and Partition-Concept.
These reformulation operators are described next.

Select Database

The Select-Database reformulation operator maps a domain-level concept directly to a database-level con-
cept. In many cases this will simply be a direct mapping from a concept such as SeaJPort to a concept that
corresponds to the seaports in a particular database. There may be multiple databases that contain the

3These are to be distinguished from query-plan reformulation operations, which are described in Section 5.

14

same information, in which case the domain-level concept can be reformulated into any one of the database
concepts. In Figure 2.2, Sea-Port can be transformed into either AFSC-Sea_Port or PACF_Sea_Port. The
following example shows how a simple query would be reformulated using AFSC_Sea_Port. In general, the
choice is made so as to minimize the number of queries to different databases.4

Input Query:
(retrieve (?name)

(:and (sea_port ?port)
(port.name ?port ?na»e)))

Reformulated Query
(retrieve (?name)

(:and (aisc_sea-port ?port)
(afsc.port.name ?port ?name)))

Generalize Concept

The Generalize-Concept operator uses knowledge about the relationship between a class and a superclass to
reformulate a requested concept in terms of a more general concept. In order to preserve the semantics of
the original request, one or more additional constraints may need to be added to the query in order to avoid
retrieving extraneous data. For example, a request for rail ports can be replaced with a request for seaports
with the additional constraint that the seaports have a rail capability (i.e. (port.rail ?port "Y")). This is
illustrated in the following example.

Input Query:
(retrieve (?name)

(:and (rail-port ?port)
(port.name ?port ?name)))

Reformulated Query
(retrieve (?na»e)

(:and (seaport ?port)
(port.name ?port ?name)
(port.rail ?port "Y")))

Specialize Concept

The Specialize-Concept reformulation operator attempts to replace a given concept with a more specific
concept. This is done by checking the constraints on the query to see if there is an appropriate specialization
of the requested concept that would satisfy it. Identifying a specialization of a concept is implemented by
building a set of Loom expressions representing each concept and then using the Loom classifier to find any

specializations of the concept expression.
For example, consider the hierarchy fragment shown in Figure 2.2 again. Given the query shown below,

which requests the ports with a depth greater than 25, the Loom classifier uses the fact that only seaports
have a relation that corresponds to port.depth. Therefore, only seaports could possible satisfy the query,
and in the original request ports can be replaced with seaports. There are several databases that correspond
to seaports, so the requested information can now be retrieved.

Input Query:
(retrieve (?name)

4 Currently we assume the databases contain consistent information, so the choice of databases only effects the efficiency of
the query and not the accuracy.

15

(:and (port ?port)
(port.name ?port ?name)
(port.depth ?port ?depth)
(> ?depth 25)))

Reformulated Query
(retrieve (?name)

(:and (seaport ?port)
(port.name ?port ?name)
(port.depth ?port ?depth)
(> ?depth 25)))

Partition Concept

The Partition-Concept operator uses knowledge about set coverings (a set of concepts that include all of the
instances of another concept) to specialize a concept. This information is used to replace a requested concept
with a set of concepts that cover it. For example, given the knowledge that the Port is covered by Sea.Port
and Air_Port, a request for ports can be satisfied by retrieving and combining these two subconcepts. This

is illustrated in the example below.

Input Query:
(retrieve (?name)

(:and (port ?port)
(port.name ?port ?name)))

Reformulated Query
(retrieve (?name)

(:or (:and (sea_port ?port)
(port.name ?port ?name))

(:and (air-port ?port)

(port.name ?port ?name))))

3.2 The Reformulation Process

Reformulation is performed by treating the reformulation operators as a set of planning operators and then
using a planning system to search for a reformulation of the given set of concepts. The initial clauses of the
query are divided into references to individual concepts and their associated constraints. The planner then
searches for a way to map each of these concepts with their associated constraints into database concepts.

For example, consider the query shown below. It is first decomposed into two separate expressions - one
about ports and the other about geolocs. Then the reformulation operators are used to find mappings to
database concepts. Any remaining clauses (e.g.. comparisons across concepts) are dealt with when a plan

for accessing the data is generated.

(retrieve (?name)

(:and (rail-port ?port)

... (port.refrig ?port ?refrig)

(> ?refrig 0)

(port.geocode ?port ?geocode)

(port.name ?port ?name)

(geoloc ?geoloc)

(geoloc.country .name ?geoloc "Germany")

(geoloc.geocode ?geoloc ?geocode)))

16

Using the reformulation operators described previously, the planner determines that the Geoloc concept
expression can be mapped directly to a database and the Rail-Port concept expression needs to be reformu-
lated. It can be reformulated into a Sea.Port concept expression, as described in Section 3.1, by adding a
constraint. The resulting plan for reformulating the initial query is shown below.

general ize-concept rail.port (:and sea_port (filled-by port .rail "Y"))
select-database sea_port afsc.sea.port
select-database geoloc geo-geoloc

The final step is to take this plan and execute it. This is a straightforward process of applying the
transformations in the query plan in the order listed. The resulting query is as follows.

(retrieve (?name)

(:and (af sc_sea_port ?port)

(afsc.port.rail ?port "Y")

(afscport.refrig ?port ?refrig)

(> ?refrig 0)

(afscport .geocode ?port ?geocode)

(afscport.name ?port ?name)

(geo-geoloc ?geoloc)

(geo-geoloc.country.name ?geoloc "Germany")

(geo_geoloc.geocode ?geoloc ?geocode)))

3.3 Caching Retrieved Data

Data that is required frequently or is very expensive to retrieve can be cached in the Loom knowledge base
and retrieved directly from Loom. An elegant feature of using Loom to model the domain is that caching
the data fits nicely into this framework. The data is currently brought into Loom to perform the local
processing, so caching is simply a matter of retaining the data and recording what data has been retrieved.
, To cache retrieved data into Loom requires formulating a description of the data. This can be extracted
from the initial query since queries are expressed in Loom in the first place. The description defines a
new subconcept and it is placed in the appropriate place in the concept hierarchy. The data then become
instances of this concept and can be accessed by retrieving all the instances of it.

Once the data is stored, it can be retrieved using the specialization operator that was described above.
When the user poses the same query, the system can reformulate that query into the newly stored one and
when the stored query is used, the cached data is retrieved directly from Loom.

4 Access Planning

The planning process described in this section finds an ordering of the database accesses and data comparisons
by analyzing the dependency structure of the constraints on the query. It then generalizes the plan to remove
any unnecessary ordering constraints in order to maximize the plan's potential parallelism. The complete
database access plan is converted back into a partially ordered set of grounded subqueries that can be handed
to LIM or executed directly in Loom. The first subsection below describes how the initial access plan is
generated, and the second subsection describes how the plan is converted into the appropriate subqueries.

4.1 Generating an Access Plan
Since some of the databases are quite large, there can be a significant difference in efficiency between different
possible plans for a query. Therefore, we would like to find subqueries that can be implemented as efficiently
as possible. To do this the planner must take into account the cost of accessing the different databases,
the cost of retrieving intermediate results, and the cost of combining these intermediate results to produce
the final results. In addition, since the databases are distributed over different machines or even different

17

(and (concept afsc-sea_port ?port)
(relation port.refrig ?port ?refrig)
(relation port.geocode ?port ?geocode)
(relation port.name ?port ?name)))
(comparison > ?refrig 0)
(concept geoloc ?geoloc)
(relation geoloc.countryJiaie ?geoloc "Germany")
(relation geoloc.geocode ?geoloc ?geocode))

Figure 2.3: Goal Statement for the Planner

Operator Purpose

Retrieve-Concept Retrieves information from a particular database, subconcepts.

Generate-Values Uses a given relation to generate values for a given variable.

Filter-Values Uses a given relation to filter values for a given variable.

Compare-Values Performs a comparison between two sets of values.

Begin-Query Indicates the beginning of a query to one of the databases.

End-Query Indicates the end of a query.

Figure 2.4: Operators for Planning a Query

sites, we would like to take advantage of potential parallelism and generate subqueries that can be issued
concurrently.

A central task of the planner is to determine the ordering of the various accesses to databases. In the
course of executing this task it also selects the databases from which to extract information. The ordering is
determined by analyzing which steps in the plan for the query are generating values for variables and which
steps are filtering the possible values. If one step depends on information produced in another step, then
they must be done in the correct order. The Prodigy system, described in Section 1.1 is used to form the
subqueries and order them. The problem is cast as a set of Prodigy operators, where the original semantic
query constitutes the goal that is to be achieved by the planner.

In a straightforward process, the reformulated example query described in the last section is mapped by
Prodigy into the goal for the planner shown in Figure 2.3. (Note that the language being used is no longer
Loom.) Each subclause of the query is annotated with additional information indicating whether it is a
concept, relation, or comparison subclause.

The set of operators used by the planner is shown in Figure 2.4. The first operator, retrieve-concept
simply maps a concept to the database used to retrieve the desired information. The next three operators,
generate-values, filter-values, and compare-values, determine the constraints on the order of the
accesses to the individual databases. The remaining operators, begin-query and end-query, delimit the
operations performed on an individual database.

As an illustration, the retrieve-concept operator is shown in Figure 2.5. This operator specifies a set
of preconditions that must be true in order to apply the operator. In this case the preconditions are that
information about the concept is directly available from some database and that this database has been
opened. If the database has not been opened for retrieval, then the planner would create the subgoal of
doing so and insert a begin-query operation. The retrieve-concept operator has two effects. The first
specifies that the information for this concept is now available, and the second specifies in which database
the information is available.

The system generates a plan to achieve the goal in Figure 2.3 by selecting operators to achieve each of
the goal conditions. If the preconditions of a selected operator do not hold, then the system must recursively

18

(retrieve-concept
(params (<pred> <object> <db>))
(preconds (and (database-concpt <pred> <db>)

(open-db <db>)))
(effects ((add (concpt <pred> <object>))

(add (available <object> <db>)))))

Figure 2.5: Operator for Retrieving a Concept from a Database

achieve each of the preconditions. Once the system has achieved all of the goal conditions, it will have a plan
for retrieving the information to satisfy the initial query. The resulting plan specifies which databases are
to be used to satisfy the query as well as any constraints on the order in which the information is retrieved.

Prodigy initially produces a totally ordered plan for retrieving information. This plan is then converted
into a partially ordered set of plan steps free of unnecessary ordering constraints. Each of an operator's
preconditions in the database access plan explicitly states the conditions on which that operator depends.
We use the algorithm of Veloso [58] to convert the totally ordered plan into a partially ordered plan from the
definitions of the operators. This algorithm is polynomial in the length of the plan. The resulting partially
ordered plan is shown in Figure 9.

4.2 Subquery Formation

The second step in the query planning process is to formulate the actual subqueries which will be passed
on to LIM and eventually translated into database queries. Since LIM takes care of such details, we do not
need to worry about the access languages of the individual databases, their locations, etc. Instead, we only
need to formulate Loom queries that refer to information in one database. LIM and the DBMSs for the
individual databases are responsible for selecting the appropriate access paths and locally optimizing the
query within that database (we discuss global optimization in the next section).

The subqueries are formed by grouping together steps of the original plan. This is a relatively straightfor-
ward process that is aided by the presence ofbegin-query/end-querysteps in the plan graph. The grouping
is done by combining nodes in the plan partial order, to produce a final partial order on the subqueries.
The subqueries for the example problem are shown in Figure 2.7. It shows that to implement the original
query, three operations are necessary. The first two are accesses to separate databases that can be done in
parallel. The third operation is a comparison in Loom on the results from these two subqueries. This last
step cannot begin until the other two are complete.

5 Query-Plan Reformulation

Constructing a plan for retrieving information is only part of the problem. An important consideration in
mapping the initial query into a set of subqueries is the total time that it will take to execute all of the
subqueries. One approach to reducing this cost is to search for reformulations of the query access plan that
reduce it. Database management systems (DBMSs) often perform syntactic query reformulation [25]. We
leave that task to the respective DBMS then, and focus instead on more global semantic query reformulation
[12, 27]. The idea is to transform the query resulting from the planning process into a semantically equivalent
one that can be executed more efficiently.

Consider the planned query illustrated in Figure 2.7. The final step in this query, comparing two ge-
ographic location codes ?geocode and ?geocode2, could be quite costly since the cost of comparison is
proportional to the square of the potentially large number of intermediate data items. Moreover, the com-
parison is performed in Loom, which is not as highly optimized as state-of-the-art DBMSs. There are a
variety of ways in which this query could be reformulated to reduce or eliminate the cost of this last step.
For example, knowledge about the contents in the databases could be used to augment the earlier subqueries.
so that less intermediate information would be generated. Or, knowledge about the domain could be used
to transform a subquery into an equivalent one that can be more efficiently executed.

19

0)
=3 a
"a
C3
X

W

c
es

00

s
oo

c

a,

u
3
Ml

20

(I>I)-KI-:TRIICVK (7p«>rt .'name .'yoocodc))

(afsc_sea_port ?port)
(afsc_port.rail ?port "Y")
(afsc_port.refrig_storage ?port ?refrig)
(< O ?refrig)
(afsc_port.geocode ?port ?geocode)
(afsc_pon.name ?port ?narae)

(l.CXJM-Kli IRIIiVi: (7imme>)

(= ?geocode ?geocode2)

<I>U-RI-:TUII-:VI; (?«ei>u>c

(geo_geoloc ?geoloc)
(geo_geoloc.country_name ?geoloc "Germany")
(geo_geoloc.geocode ?geoloc ?geocode2)

Figure 2.7: Final SIMS Plan for Example Query

Our approach to this problem differs from other related work on semantic query reformulation in an
important respect that we do not rely on explicit heuristics of the database implementation to guide search
for reformulations in the combinatorially large space of the potential reformulated subqueries. Instead,
our algorithm considers all possible reformulations by firing all applicable rules and collecting candidate
constraints in an inferred set. And then we select the most efficient set of the constraints from the inferred
set to form the reformulated subqueries. This algorithm is not only more flexible and efficient, but the
results of the rule firing turn out to be the useful information for extending subquery reformulation to the
reformulation of the entire query plan. Most of other related work only reformulates single database queries.

Below we describe the principle behind the semantic reformulation, what knowledge is used for performing
the reformulation, and the reformulation algorithms for subqueries and query plans.

5.1 Reformulation of Subqueries

The subquery reformulation problem is analogous to the problem of semantic query optimization for single
database queries in previous work. The goal of query reformulation is to use reformulation to search for
the least expensive query from the space of semantically equivalent queries to the original one. Two queries
are defined to be semantically equivalent[bl] if they return identical answers given the same contents of the
database. The alternative definition of semantic equivalence[27] requires that the queries return identical
answers given any contents of the database, but this definition would limit us to using only semantic
integrity constraints which are often not available. The use of the less restrictive definition of semantic
integrity requires that the system updates the learned knowledge as the databases change.

The reformulation from one query to another is by logical inference using database abstractions, the
abstracted knowledge of the contents of relevant databases. The database abstractions describe the databases
in terms of the set of closed formulas of first-order logic. These formulas describe the database in the sense
that they are true with regard to all instances in the database. We define two classes of formulas: range
information, which are propositions that assert the value range of database attributes; and rules, which are
implications with an arbitrary number of range propositions on the antecedent side and one range proposition
on the consequent side. Figure 2.8 shows a small set of the database abstractions. In all formulas the variables
are implicitly universally quantified.

The first two rules in Figure 2.8 state that for all instances, the value of its attribute country name
is "Germany" if and only if the value of its attribute country code is "FRG". With these two rules, we can
reformulate the subquery SUBqi in Figure 2.9 to the equivalent subquery SUBQ2 by replacing the constraint on
geo_geoloc. country .name with the constraint on geo^eoloc.countryjcode. We can inversely reformulate
SUBQ2 to SUBqi with the same rules. Given a subquery Q, let C\,..., Ck be the set of range and interaction
constraints in Q, the following reformulation operators return a semantically equivalent query:

• Range Refinement: A range-information proposition states that the values of an attribute A are
within some range Rj.. If a range constraint of .4 in Q constrains the values of A in some range #,-,

21

Range Information:
1: (geo_geoloc.country.name€("France" "Taiwan" "Japan" "Italy" "Germany"))
2:(aisc4>ort.geocode € ("BSRL" "HUTS" "FGTW" "VXTY" "WPKZ" "XJCS"))
3:(0 < afsc-port.refrig-storage < 1000)

Rules:
1: (geo-geoloc. country .name = "Germany") =^- (geo-geoloc.country.code =
"FRG")
2: (geo-geoloc. country.code = "FRG") => (geo_geoloc.country_name =
"Germany")
3: (geo-geoloc. country .code = "FRG")=>(47.15 < geo_geoloc.latitude
< 54.74)
4:(afscport.rail = "Y") =*• (afscport .geocode € ("BSRL" "HNTS"
"FGTW"))
5:(6.42 < geo-geoloc.longitude < 15.00) A

(47.15 < geo-geoloc.latitude < 54.74)
==> (geo_geoloc.countryjcode = "FRG")

Figure 2.8: Example of Database Abstractions

SUBQ1:
(retrieve (?geoloc ?geocode2)

(:and (geo_geoloc?geoloc)
(geo_geoloc.geocode ?geoloc ?geocode2)
(geo_geoloc. country .name ?geoloc "Germany")))

SUBQ2:
(retrieve (?geoloc ?geocode2)

(:and (geo_geoloc?geoloc)
(geo_geoloc.geocode ?geoloc ?geocode2)
(geo-geoloc. countryxode ?geoloc "FRG")))

SUBQ3:
(retrieve (Tgeoloc ?geocode2)

(:and (geo.geoloc?geoloc)
(geo-geoloc. geocode ?geoloc ?geocode2)
(geo-geoloc.country-code ?geoloc "FRG")
(geo_geoloc. latitude ?geoloc Tlatitude)
(?latitude >- 47.15) (?latitude <= 54.74)))

Figure 2.9: Equivalent Subqueries

then we can refine this range constraint by replacing the constraining range Ä, with Ri ("1 Rj.

• Constraint Addition: Given a rule A —► B, if a subset of constraints in Q implies A, then we can
add constraint B to Q.

• Constraint Deletion: Given a rule A —»■ B, if a subset of constraints in Q implies A and B implies
d, then we can delete C, from Q.

• Subquery Refutation: Given a rule A —► B, if a subset of constraints in Q implies A, and in the
query there exists a range constraint d such that B implies ->Cj, then we can assert that Q will return

NIL.

Replacing constraints is treated as a combination of addition and deletion. Note that these reformulation
operators do not always lead to more efficient versions of the subquery. Knowledge about the access cost
of attributes is required to guide the search. For example, suppose the only database index is placed on
the attribute geo-geoloc. country .name. In that case reformulating SUBQ2 to SUBQ1 will reduce the cost
from O(n) to O(k), where n is the size of the database and k is the amount of data retrieved. However,
if either geo-geoloc. country .name and geo_geoloc. country _code are not indexed, then we will prefer

22

SUBQ-REFORMULATION(Subquery, DB-Knowledge, Cost-Model)
1.refine range constraints, if Subquery refuted, return Nil;
2.for all applicable rules A -> B in DB-Knowledge:

if Subquery refuted, return NIL;
else add B to Inferred-Set, add (B,A) to Dependency-List;

3.for all B in Inferred-Set in the order of their cost:
if B is not indexed and 3 (B,A) in Dependency-List

delete B from Subquery, delete (B,A) from Dependency-List;
replace all (C,B) in dependency list with (C,A);

4.return (reformulated Subquery, Inferred-Set)
END.

Figure 2.10: Subquery Reformulation Algorithm

the lower cost short string attribute geo-geoloc. country .code. In this case, reformulating SUBQ1 to
SUBQ2 becomes more reasonable. Figure 2.10 shows our subquery reformulation algorithm. We explain the
algorithm below by showing how SUBq-REFORMULATION reformulates the subquery SUBQ1, the lower query

in the query plan in Figure 2.7.
There are three input arguments to the algorithm: the subquery to be reformulated, the database

abstractions, and the cost model. The first step in the algorithm is to refine the range constraints. The only
range constraint in SUBQ1 is on geo_geoloc. country .name, and its constrained value Germany is within the
range of possible values (see the first formula of range information), so this constraint remains unchanged.

The second step is to match all applicable rules from the set of database abstractions using the reformu-
lation operators defined above. The first rule in Figure 2.8 is matched and fired for Sl'BQl and we get an
additional constraint (geo-geoloc. country jcode ?geoloc "FRG"), which is added to the Inf erred-Set.
Then the second and third rules are matched because of the additional constraint on country code. The
constraints geo-geoloc. latitude and geo_geoloc. country .name are added to the Inf erred-Set.

The third step is to select the constraints in the Inferred-Set to delete from the subquery. The
selection is based on the constraint's relative estimated execution cost which is computed by the type of
the constraints (range constraint, or interaction constraint), the type of the attribute's values (integer,
string, and their length), and whether they are indexed. The attribute geo_geoloc. country .name is deleted
because its long string type is the most expensive. The next most expensive constraint is the one on attribute
geo-geoloc. country .code. However, it should be preserved because the cause of its deletability (i.e., the
constraint on geo-geoloc. country .name) was just deleted. Finally, the constraint on geo_geoloc. latitude
is kept because it is an indexed attribute that will improve the efficiency of the subquery. The algorithm
returns the reformulated subquery SUBQ3 as shown in Figure 2.9, as well as the Inferred-Set, which will
be used for reformulating the succeeding subqueries in the query plan.

The worst case complexity of SUBq-REFORMULATIOH is 0(R2MN), where M is the maximum length of the
antecedent of the rules, JV is the greatest number of constraints in the partially reformulated query, that is,
the number of original constraints plus the number of added constraints before final selection, R is the size of
DB-Knowledge. In the average case, the complexity is much smaller than this worst case estimation. Because
R2 > MN, R is the dominating factor in the complexity and should be kept within a manageable size. This
complexity analysis assumes that the system matches database abstractions by linear search. Therefore, a
very large set of database abstractions could make the reformulation costly. To avoid this problem, we plan
to adopt a more sophisticated rule match algorithm, such as the RETE algorithm[l9], that will improve the

algorithm's efficiency.

5.2 Reformulation of Query Plans

We can reformulate every subquery in the query plan with the subquery reformulation algorithm and im-
prove their efficiency. However, the most expensive aspect of the multidatabase query is often processing
intermediate data. In the example query plan in Figure 2.7, the constraint on the final subqueries involves
the variables ?geocode and ?geocode2 that are bound in the preceding subqueries. If we can reformulate
these preceding subqueries so that they retrieve only those data instances possibly satisfying the constraint

23

QPLAN-REFORMULATION(Plan, DB-Knowledge, Cost-Model)
l.KB — DB-Knowledge;
2.for all subqueries S in the order specified in Plan:

(S\Inferred-Set) — SUBQ-REFORMULATIOtKS,KB,Cost-Model);
if S' refuted, return Nil;
else update KB with Inferred-Set; update Plan with S';

3.for all subqueries S whose semantics are changed:
SUBq-REFORMULATION(S, DB-Knowledge, Cost-Model);

4.return reformulated Plan
END.

Figure 2.11: Query Plan Reformulation Algorithm

<r>IJ-RI-:TRII-:Vi; (»port ?name 7«oococlc))

(afsc_sea_ports ?port)
(afsc_ports.rail ?port "Y")
(afsc_ports.refrig ?port ?refrig)
(< O ?refrig)
(afsc_ports.geocode ?port ?geocode)
(afsc_ports.name ?port ?name)

(I3IJ-RI-:TRlIiVIi (?gcoloc 7geocode2))

(I.OOM-RI-ITRIliVH (?namc))

(= ?geocode ?geocode2)

(geo_geoloc ?geoloc)
(geo_geoloc.country_code ?geoloc "FRG")
(geo_geoloc.geocode ?geoloc ?geocode2)
(geo_geoIoc.latitude ?geoloc ?latitude)
(47.15 <= ?latitude <== 54.74)
(member ?geocode2 ("BSRL" "HNTS" "FGTW"

Figure 2.12: Reformulated SIMS Plan for Example Query

(= ?geocode ?geocode2) in the final subquery, the intermediate data will be reduced. This requires the
query plan reformulation algorithm to be able to propagate the constraints along the data flow paths in the
query plan. The query plan reformulation algorithm defined in Figure 2.11 achieves this by updating the
database abstractions and rearranging constraints. We explain the algorithm below using the query plan in
Figure 2.7.

The algorithm takes three input arguments: the query plan, the database abstractions, and the cost
model. This algorithm reformulates each subquery in the partial order (i.e., the data flow order) speci-
fied in the plan using SUBq-REFORMULATIOH. In addition, the database abstractions are updated with the
Inferred-Set returned from SUBq-REFORMULATIOI to propagate the constraints to later subqueries. In
this example, the second formula of the initial range information is replaced by (afscport.geocode G
("BSRL" "HHTS" "FGTW")), the consequent condition of the fourth rule. The algorithm uses this updated
range information to reformulate the final subquery and reduces the possible values from six to three. In
addition, the constraint (afsc.port.rail ?port "Y") in the upper subquery is propagated along the data
flow path to its succeeding subquery.

Now that the updated range information for ?geocode is available, the subquery refor-
mulation algorithm can infer from the constraint (= ?geocode ?geocode2) a new constraint
(member ?geocode2 ("BSRL" "HHTS" "FGTW")). In our example, the variable is bound by
(geo_geoloc.geocode ?geoloc ?geocode2) in the lower subquery in Figure 2.7. The algorithm will insert
the new constraint on ?geocode2 in that subquery. In this way, the constraints (afsc.port.rail ?port
"Y") and (= ?geocode ?geocode2) are propagated back along the data flow path to the lower subquery
This process of new constraint insertion is referred to as constraint rearrangement. The final reformulated
query plan is shown in Figure 2.12.

This query plan is more efficient than and returns the same answer as the original one. In our example, the
lower subquery is more efficient because of the new constraint on the indexed attribute geo_geoloc. latitude
(by SUBq-REFORMULATION). The intermediate data items are reduced because of the new constraint on the
attribute geo_geoloc.geocode. The logical rationale of this new constraint is derived from the constraints

24

query 1 2 3 4 5 6 7 8 9 10
planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8 reformulation time
rules fired (times)

0.1
37

0.1
18

0.0
11

0.5
126

0.1
63

0.0
8

0.0
17

0.1
15

0.1 0.3

query exec, time w/oR" 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8
query exec, time w/R6

0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2 total elapsed time w/oR
total elapsed time w/R

0.8
0.9

8.5
1.9

1.2
0.6

14.4
13.9

12.4
12.3

2.7
0 7

251.7
1 0

402.3 256.3 2596

intermediate data w/oR - - . 145 41 1 810 956 808 810 intermediate data w/R - . - - 145 35 0 28 233 320 607

"w/oR = Without reformulation.

6w/R = With reformulation.

Table 2.1: Experimental Results

in the other two subqueries: (afsc_port.rail ?port "Y") and (= ?geocode ?geocode2). and the fourth
rule in the database abstractions.

The complexity of qPLAK-REFORMULATIO» is 0(SR2MN), where 5 is the number of subqueries in the
query plan, and R2MN is the cost of SUBq-REFORMULATIOH. In actual queries, S is relatively small so the
dominating factor is still the cost of the subquery reformulation R?MN. in which the size of the database
abstractions R is the most important factor, as shown in section 5.1. Thus, with a manageable size of the
database abstractions, our algorithms are efficient enough to be neglected in the total cost of the multi-
database retrieval.

The earliest work in query reformulation was referred to as semantic query optimization and was applied
to the single database query processing domain in a system called QUIST[27]. In contrast with syntactic
query optimization, which has been widely studied in the database community, QUIST uses the rules of
semantic integrity constraint of the database as background knowledge to reformulate the given query
However, QUIST and the following work[51, 12] use heuristics to select the reformulation operators and
rules to reformulate the query in a hill-climbing manner. Our reformulation algorithm does not require
heuristic control and is thus more flexible. Moreover, our algorithm utilizes the database abstractions to the
greatest possible extent, while hill-climbing only searches for the local optimum.

5.3 Experimental Results of Reformulation

Table 2.1 provides statistical data concerning the preliminary experimental results of the query plan refor-
mulation algorithm. In this experiment, the SIMS system is connected with two remote Oracle databases.
One of the databases consists of 16 tables, 56,078 instances, the other database consists of 14 tables, 5,728
instances. The queries used were selected from the set of SQL queries constructed by the original user's of
the databases. The first three queries are single database queries, while the others are multidatabase queries.
This initial results indicate that our algorithm can reduce the total cost of the retrieval substantially. In
most multidatabase queries, the amount of intermediate data is reduced significantly. The overheads of re-
formulation is included in the total execution time and is relatively small compared to the cost of executing
most queries.

The system used 267 database abstraction rules in this experiment. These rules were prepared by
compiling the databases. The compiling procedure summarizes the range of each relation of the database
by extracting the minimum and maximum values for numerical relations, or enumerating the possible values
for string type relations. If the number of possible values exceeds a threshold, this range information is
discarded. The rules were prepared by a semi-automatic learning algorithm similar to the KID3[43]. This
algorithm takes a user input condition A, and learns a set of rules of the form A -* B from the database.
The algorithm retrieves the data that satisfy the condition A, then compiles the data for the conclusions B.

We are now developing an automatic learning algorithm that is driven by example queries. We plan to use
inductive leamingflO, 20, 34] to identify the costly aspects of the example subqueries, propose candidate rules
to learn, and then refine the candidate rules to the desired operationally. Previous work that automatically
derives the content knowledge is proposed by Siegel[5l]. Our approach differs from theirs in that it is driven

25

fUtJ-Kt'JMtVt if SHIP ■?DHAI I>>

(<*atr_tti» racwrf^Mfe mMH '«Up naO

w...»i,n),iiumj.i,iJi):HiiJ,u1iJ!m.iii,iiiL,mj 1
(Dfl-MIWlVt ('POH1 ?[>tS<;mm>IH7POHl-MAMi TM.PIH»}

(•/•<_•«<•_• Trat)
<rf»CJ«<», 1>«H ll_«FBl 7|

Mat_**>ti*aM TurtTurt ■—■)

(retrieve (?port-rume ?d*pth Twldth ?de*c)
(and (ch»tr_ihlp_record_i Tihip)

(ch»tx_«hip_f»cord.id_eode Tship "2401")
(crtstr_ship_racord.mob_condition Tihip "10C")
(chstr_*hlp_i«cord.mln3™'l ?»hlp ?drait)
(atac_ports_s ?port)
(afsc_poi1s.chann«l_depth ?pott ?d«pth)
(afsc_port*.channelj«ridth ?port Twldth)
(afsc_porti.dMCription ?poi1 Tdeic)
(< ?dnrit ?d*pth)
(arsc_portvname ?port ?port-narm)))

Load Problem Generate Pin Genast SUxyaies Execute Subqueries Solve problem Graph model Exit

sins approached through <; ton channeal ae Tlmos Jbm deep")
("Sousse" 65

700
"Artificial harbor with 13-32 meters deep with 700 ft chann

el-width")
("Sfax" 85

125
"Artificial harbor with i basin» (140 acres). 10-35 feet

deep with largest vessel restricted to 900 ft."))

?Pat-rame TOeptri TWatti TJasc

Tuns" 120 2000 landlocked tartar. HiqalWadi 2 basins. Tunis 4 basins approached ttrough 4

■Sousse" 65 700 "Ar*iairaioor»ith13-32m»ttredeepw*700«cnanr«<-*<!th"

"Sta" 85 125 "AfHbialrBntarwilh4basir«(140icras). 10-35leetdeepwithlaigsstv»ssBlrastii
Command:

Figure 2.13: Sample SIMS Interface Screen

by the need for reformulation in the example instead of by a fixed set of heuristics, and it is flexible with
regard to various database implementations. This is necessary in our case, since the databases integrated
by SIMS are usually heterogeneous.

6 The SIMS Interface

Our intention is that the user view SIMS as a black box that allows the user to query multiple sources of
information as if they were one single source. Given this scenario, an important issue is the ease with which
the user can pose queries to the system and receive an answer. Since the exact terms used in a model by
the developer will often differ from those which a user may be familiar with, it is very important that the
developer's model be accessible to the user. We have thus stressed the importance of providing an easy to use
interface for posing queries, one that allows the user convenient access to the model and help in construction
of the query.

At the same time it is important that the model be constructed accurately by the developer. The model
defines the application domain ontology, for both the user and SIMS. Not only will the model builder need
to be able to build a good model of the domain, but he needs to be able to connect terms in the domain
model with the corresponding terms in the database model. In order to build a model containing hundreds,
possibly thousands of concepts, it is essential that the model builder have tools to view the models. The
model builder also needs tools to help connect models fragments.

26

A common need for both users and model builders is a good way of viewing the model. Given that SIMS
models are Loom models, a subsumption-based hierarchy of concepts, the logical visual representation to
use is a graph. But a subsumption hierarchy only shows part of the definition of a model, the is-a relations,
to show how a subconcept differs from its superconcept, it is usually necessary to show its roles. Hence our
graph shows not only the concepts but the roles of concepts and their ranges.

SIMS does not dictate a single mode of interaction. We believe that the full range of underlying user
interface management modalities should be made available to the user. Commands can be issued by mouse
gestures applied to the desired objects, through a menu, or by keyboard commands. The user interface
management system used by SIMS is CLIM 1.1, which is a high level presentation-based user interface
system.

6.1 The Query Interface

SIMS is accessed by the user through the query interface. Central to the ability to pose a query is knowledge
of the terms in which the domain is denned.

The SIMS query interface will provide the user aid in the following manner:

• A forms based query input facility.

• Access to the models via a graph of the domain and database models.

• The ability to specify terms of the query by clicking on nodes in the graph.

• Intelligent defaulting — automatic filling in of appropriate variable names for a sub-query.

6.2 The Model Building Interface

The domain model defines the ontology of the domain, i.e., all the terms and relations that one can use
to query the various information sources. It also defines the expressiveness of the domain, as well as how
powerfully SIMS can be in reformulating the queries. A domain model for a realistic application can easily
contain hundreds of concepts and relations, and depending on the complexity of the application, can get out
of hand very fast, especially if created using a text editor. At the same time, many concepts are likely to be
very similar, being no more than slightly modified copies of already existing subconcepts of some concepts
and hence tedious to enter. To ease the model building process, we provide the following tools:

• Two editors:
«

- a form-based editor that is knowledgeable about the syntax of Loom terms and allowable inputs.

- a text based editor for direct manual entry/modification of definitions.

• Interactive gesture-based editing, nodes can be modified, added or deleted by clicking the mouse on
the relevant node.

• Graph navigation aids — panning, node hiding/unhiding and node centering.

7 Conclusions

This chapter describes a system for efficiently accessing and integrating information from multiple informa-
tion sources (e.g., databases and knowledge bases). The various information sources are integrated using
the Loom knowledge representation language. The system requires a model of the application domain and
a model of the contents of each of the information sources. Then, given a query, the system generates and
executes a plan for accessing the appropriate information sources. Before executing a query, the system first
reformulates the individual subqueries to minimize the cost and the amount of intermediate data that is
processed. Then the subqueries are executed, exploiting any parallelism in the plan.

SIMS currently integrates information from data stored in nine Oracle databases and information stored
in a Loom knowledge base. The system uses the Loom Interface Manager (LIM) to retrieve data from the

27

Oracle databases and then processes all the data in Loom. The plan for selecting and accessing the various
information sources is generated using the Prodigy planning system. The resulting plan is reformulated
using a set of special purpose algorithms for semantic query optimization over multiple database queries.

28

Chapter 3

Generating Parallel Execution Plans
with a Partial-Order Planner

1 Introduction

There are a wide variety of problems that require generating parallel execution plans. Partial-order planners
have been widely viewed as an effective approach to generating such plans. However, strictly speaking,
a partially-ordered plan represents a set of possible totally-ordered plans. Just because two actions are
unordered relative to one another does not imply that they can be executed in parallel. The semantics of a
partially-ordered plan provide that the two actions can be executed in either order. Simultaneous execution
requires that potential resource conflicts between unordered actions be made explicit and avoided.

There are numerous partial-order planners presented in the literature, including SIPE [63], NONLIN [53],
SNLP [32], UCPOP [42], TWEAK [14], O-PLAN [18], etc. Many of these planners have been used to produce
parallel plans, but previously no one has precisely described the class of parallel plans they produce, identified
their limitations, or described the assumptions made for the parallel plans that they do produce.

This chapter focuses on the use of partial-order planning to generate parallel execution plans. First,
we identify the conditions under which two unordered actions can be executed in parallel. The component
missing from many planners is an explicit representation of resources. Second, assuming that the resource
constraints have been made explicit, we identify the classes of parallel execution plans that can be generated
using different partial-order planners. Third, we present an implementation of a parallel execution planner
based on UCPOP. Fourth, we describe how this planner can be used to generate parallel query access plans.
Fifth, we compare the use of a partial-order planner to other approaches to building parallel execution plans.
Finally, we review the contributions of the work and describe some directions for future research.

2 Executing Actions in Parallel

Classical planners assume that the execution of an action is indivisible and uninterruptible [62]. This is
referred to as the atomic action assumption and stems from the fact that the STRlPS-style representation
only models the preconditions and effects of an action. This assumption would appear to make simultaneous
execution impossible, since it is unclear from the action model whether any two actions can be executed
simultaneously without interacting with one another. This section identifies the conditions under which it
is possible to execute two actions in parallel.

The work on parallelizing execution of machine instructions [54] provides some insight on the types
of dependencies that arise between actions. Tjaden and Flynn identify three types of dependencies that
must be considered in parallelizing machine instructions: procedural, operational, and data. A procedural
dependency occurs when one instruction explicitly addresses another instruction and therefore imposes an
ordering between the instructions. An operational dependency occurs when there is a resource associated
with an instruction that is potentially unavailable. A data dependency occurs when one instruction produces

29

a result that is used by another instruction.
Similar dependencies arise in the parallelization of planning operations. A procedural dependency arises

when one operation is explicitly ordered after another operation, which occurs in many of the hierarchical
planners [53, 63] (e.g., see the plot construct in SIPE). This type of constraint is captured by explicit ordering
constraints between actions. A data dependency arises when the precondition of one operation depends
on the effects of another operation. This type of dependency is captured by the operator representation
and corresponding algorithms, which ensure that if two actions are unordered relative to one another, their
preconditions and effects are consistent. Operational dependencies can occur when there are limited resources
associated with an operation. This type of dependency is often ignored by planning systems.

Executing actions in parallel requires explicit handling of potential resource conflicts. If two actions are
left unordered in a partial-order plan, they can be executed in either order. In order to execute them in
parallel, we must ensure that there are no potential conflicts that occur during execution. Most conflicts will
be resolved in the process of ensuring that the preconditions and effects are consistent. However, because of
the limited representation, the type of conflict that is not typically handled in a partial-order planner is when
two actions require the same reusable resource. This type of resource conflict is not typically captured by
the preconditions and effects because at the start of execution the resource is available and when execution
completes it is available.

Despite the problem of potential resource conflicts, a number of partial-order planners have allowed
simultaneous execution. They do so by either assuming the actions are independent [53], augmenting the
action representation to avoid resource conflicts [63], or requiring the user to explicitly represent the conflicts
in the preconditions and effects of the operators .18]. The approach of simply assuming that the actions are
independent could lead to unexpected resource conflicts. The approach of requiring the user to represent
the conflicts in the preconditions and effects is both awkward and computationally more expensive, since it
requires additional operators that explicitly allocate and deallocate resources. The most natural approach
is to augment the action representation to describe the explicit resource needs of the different actions. This
approach was proposed in SIPE [63], where each operator can be annotated to explicitly state if something
is a resource. In the next section we will assume that the resource constraints have been made explicit and
in the following section we will describe our approach to representing and reasoning about resources.

3 Parallel Execution Plans

This section identifies the classes of parallel execution plans that can be generated by different planners,
assuming that a domain is correctly axiomatized and explicitly represents the resource requirements of the
operators. The different types of parallel execution plans can be broken down into several classes, ranging
from plans with completely independent actions to those where the actions must be executed in parallel or
must overlap in a particular manner in order for the plan to succeed. As the interactions in the plan increase
in complexity, the corresponding planners require more sophisticated representations and reasoning in order
to generate such plans. In this section we present four classes of parallel execution plans and identify the
corresponding planners that can generate that class of plans. These classes are described in order from the
most restrictive to the least restrictive.

3.1 Independent Actions

The most restricted type of parallel execution plans are those where all of the parallel actions are completely
independent of one another.

Two actions are defined to be independent if and only if the effects of the two actions executed
simultaneously are the union of the individual effects of the actions done in isolation.

Allen [l] notes that various partial-order planners, such as NONLIN [53], DEVISER [60], and SIPE [63],
all "allow simultaneous action when the two actions are completely independent of each other." While this
statement is correct, it is a bit misleading since these planners can generate plans for a less restrictive class
of parallel plans. As noted by Horz [2l], since some of the effects of an operator may be unnecessary with
respect to the goal and preconditions of other operators, the fact that two operators are unordered in a plan

30

generated by a partial-order planner does not imply that they are independent. A planner that can only
generate plans with independent actions is UA [36], which imposes ordering constraints between any pair of
unordered actions that could possibly interact.

Figure 3.1 illustrates a simple plan with two independent actions. The goal of the plan is to have the
table painted red and the chair painted blue. Since the actions of painting the table and painting the chair
are independent, they can be executed in parallel.

Have Table
Have Red Paint

Paint Red Table
Tab»
Rad

Red Table
Start Blue Chair F,nIsh

_ Paint
Have Chair Chair HueChair

Have Blue Paint BUM

Figure 3.1: Plan With Independent Actions

3.2 Independent Actions Relative to a Goal

In a variety of partial-order planners, such as SIPE [63], SNLP [32], and UCPOP [42], the planners enforce
the property that two actions can only remain unordered if there is no threat between them. A threat
occurs when an operator could potentially delete a condition that is relevant to achieving the final goal.1 A
condition is defined to be relevant if and only if it is a goal condition or a precondition of an operator that
in turn achieves a relevant condition. The class of parallel plans produced by these planners are those with
independent actions relative to the goal.

Two actions are independent relative to a goalG if and only if, for all conditions that are relevant
to achieving G, the result of executing the actions in either order is identical to the result of
executing the actions simultaneously.

These planners are limited to this class of plans since, if there is a threat between any pair of actions,
additional constraints are imposed on the plan to eliminate the threat.

Figure 3.2 shows an example plan where all of the actions are independent relative to the goal. This
example differs from the independent action example in that the two painting actions each have a side-
effect of painting the floor as well as the object. Thus, the paint table and paint chair operators are not
independent since both operations also paint the floor different colors. However, since the color of the floor
is irrelevant to the goal of getting the table painted red and the chair painted blue, the plan is still valid and
could be generated by planners in this class.

3.3 Independent Subplans Relative to a Goal

Not all partial-order planners enforce the property that two actions can remain unordered only if there are
no threats between them. In particular, those planners that implement some form of Chapman's white
knight [14] require only that there exist some operator that establishes a given precondition, but do not
commit to which operator. More specifically, the white knight operation allows plans with the following
conditions: There exists some operator opi that achieves a goal or precondition g. There exists a second
operator opi that possibly deletes g. And there exists a third operator op3 that follows op2 and achieves g.
If we are interested in producing totally-ordered plans, then the white knight operator is not required for

'Some planners, such as SNLP and earlier versions of UCPOP, denned a threat to include an operator that adds or deletes a
relevant condition. This stronger definition of a threat is used to constrain the search space and would prevent some possible
parallel plans from being generated.

31

Have Table -L,_: . Red Table
„ _, „ . . Paint

Have Red Painty Tab|e

Red

P*'"1 Red Floor

Start
Red Table

Hue Chair Rn,sh

_ Paint
HaveChaiT* Chair 'ßiue Chair

Have Blue Paint Bhw Blue Floor

Figure 3.2: Plan with Independent Actions Relative to the Goal

completeness. However, the use of the white knight operator allows a planner to generate a slightly more
general class of parallel plans.

The planners in this class include TWEAK [14], NONLIN [53], O-PLAN [18], MP, and MPI [26]. The class
of parallel plans produced by these planners are those with independent subplans relative to a goal.

Two subplans are independent relative to a goalG if and only if, for all conditions that are relevant
to achieving G, the result of executing the subplans in either order is identical to the result
of executing the subplans simultaneously.

The class of parallel plans that can be generated by the planners in this class, but cannot be generated
by the planners in the previous class are those where there are actions that are not independent, but the
subplans in which the actions occur are independent.

Figure 3.3 shows an example plan with independent subplans relative to the goal (adapted from an
example in [26]). In this example, before the table and chair can be painted red. they must be primed, and
priming them has a side effect of painting the floor white. The final goal of the problem is to get the table,
chair, and floor all painted red. Notice that the action of priming the chair interacts with painting the table,
since they both change the color of the floor. Similarly, priming the table interacts with painting the chair.
Despite these potential interactions, the floor will still be painted red at the end of the plan since the table
and chair must be painted after they are primed. Solving this problem requires the white knight operation
to produce the parallel plan since the plan does not state which painting operation will be used to achieve
the final goal of making the floor red.

Start

Have Table
Have Primer

Prime WhtteFtoor
Table Primed Table

Prime White Floor
Chair Primed Chair

Paint Red Table Have Table
Have Red Paint £j££ f n«,.

Primed Table Red

Have Chair
Have Red Paint

Primed Chair

Red Table
Red Chair Finish
Red Floor

Figure 3.3: Plan with Independent Subplans Relative to the Goal

The implementation of the white knight, which allows a planner to generate this more general class of
parallel plans, also makes it difficult to extend the operator language to efficiently handle more expressive
constructs, such as conditional effects and universal quantification [14]. These more expressive language
constructs are often required for representing and solving real problems.

3.4 Interacting Actions

The most general class of parallel plans are those where the parallel actions interact in some way. Two
actions may need to be executed in parallel or two actions may need to overlap in a particular manner in
order for the plan to succeed. For example, if the final goal was to get the chair blue, the table yellow, and

32

the floor green and there was no green paint, we could paint the table and chair simultaneously. To handle
these cases requires the introduction of an explicit representation of time, such as that provided in temporal
planning systems [l, 4l]. However, in this chapter we are interested in the more restricted case where we
would like to execute actions in parallel to take advantage of the possible parallelism to reduce the total
execution time, not because the solution requires parallelism to solve the problem.

4 Parallel Execution Planning in UCPOP

We used the UCPOP planner [42, 7] to build a parallel execution planner. The analysis in the previous section
showed that UCPOP can produce the class of plans with actions that are independent relative to a goal. For
the specific application described in the next section, this restriction does not prevent the system from
finding any solutions. The changes to UCPOP that were required were to add explicit resource definitions
to the operators, to modify the planner to enforce the resource constraints, and to construct an evaluation
functions to estimate the cost of the parallel plans.

The resource requirements of the operators are made explicit by augmenting each operator with a resource
declaration. An example operator with a resource declaration is shown in Figure 3.4. This operator describes
the action of moving data from one data source to another and declares the data source from which the
data is being moved as a resource. The purpose of this declaration is to prevent one operator from being
executed in parallel with another operator that requires the same database.

(define (operator move-data)
:parameters (?dbl ?db2 ?data)
:resources ((resource ?dbl database))
precondition (:and (available ?dbl ?data)

(:neq ?dbl ?db2))
:effect (:and (:not (available ?dbl ?data))

(available ?db2 ?data)))

Figure 3.4: Operator with Resource Declaration

In order to avoid resource conflicts, we modified the planner to ensure that if two operators require the
same resource, then they are not left unordered relative to one another. In SIPE this is done with a critic
that checks for resource conflicts and then imposes ordering constraints when conflicts are found. In UCPOP,
we added a check to the planner such that every time a new action is added to the plan, the planner checks
for potential resource conflicts with any other operator that could be executed in parallel. Any conflicts
discovered are added to the list of threats that must be removed before the plan is considered complete.
Using the search control facility in UCPOP, these conflicts can be resolved immediately or delayed until later
in the planning process.

Since efficiency is the primary motivation for generating parallel plans, we constructed an evaluation
function that can be used to find plans with low overall execution time. Since this evaluation function
underestimates the cost of the parallel plan, the planner can use a best-first search to find the optimal
plan. This evaluation function takes into account that the cost of executing two actions in parallel will be
the maximum and not the sum of the costs. The space of parallel execution plans may be quite large, so
domain-specific control knowledge may be necessary to search this space efficiently.

The evaluation function to determine the execution time of a parallel execution plan is implemented
using a depth-first search. The search starts at the goal node and recursively assigns a cost to each node
in the plan. This cost represents the total cost of execution up to and including the action at the given
node. The cost is calculated by adding the cost of the action at the node to the maximum cost of all the
immediately prior nodes. Once the cost of the plan up to a node has been computed, we store this value so
it will only need to be calculated once. Since each node (n) and each edge (e) in the graph is visited only
once, the complexity of evaluating the plan cost is 0(max(n,e)).

33

retrieve (?3hip-type ?ship ?draft)
(and

(notionaJ_»hip ?ship)
(max_draft Tship ?draft)
<3ht_nm ?ship ?sMp-type))

[assets local 1

retrieve (»port name ?port 'channel ?depth)
(and

(seaports ?port)
(glc_cd ?port ?glc_ed)
(port_nm ?port ?port_name)
(channels ?channel>
(glc_cd Tchannd ?temp3)
(» ?temp3 ?glc_cd)
(ch_depth_ft ?channel ?depth))

Figure 3.5: Parallel Query Access Plan

5 Parallel Query Access Plans

There are two general characteristics of a domain where the use of a partial-order parallel-execution planner
will be useful and effective. First, it is applicable to those domains where the actions could be executed
serially, but the overall execution time can be reduced by executing some of the actions in parallel. Second,
it will be most useful in those domains where the choice of the operations determines or limits the overall
execution time of the plan. As such, the plan generation and scheduling cannot be done independently since
this would potentially result in highly suboptimal plans.

We applied the parallel execution planner to a query access planning problem that involves multiple
distributed information sources [28]. In this domain, a plan is produced that specifies how to retrieve and
generate the requested set of data. This requires selecting sources for the data, determining what operations
need to be performed on the data, and deciding on the order in which to execute the operations. The
planner must take into account the cost of accessing the different information sources, the cost of retrieving
intermediate results, and the cost of combining these intermediate results to produce the final results. A
partial-order parallel-execution planner is ideally suited for this problem since the parallelization is for
efficiency purposes, and there are many possible plans for retrieving the same data and the choice of plans
is crucial in determining the overall efficiency.

Figure 3.5 shows an example parallel query-access plan. The three basic query access planning operations
used in this plan are move-data, join, and retrieve. The move-data operation moves a set of data from one
information source to another. The join operation combines two sets of data into a combined set using
the given join relations. The retrieve operation specifies the data that is to be retrieved from a particular
information source.

The domain and planner described here are fully implemented and serve as an integral part of an infor-
mation retrieval agent. We have also extended UCPOP to perform execution, and to do so in parallel. The
system is implemented and runs in Lucid Common Lisp on SUN and HP workstations. To provide a sense
for the potential speed-up of this approach we ran a sample query that involved queries to two different
databases. Without parallelization, the system generated a plan with six operators in 0.82 CPU seconds
and then executed the plan in 101.8 seconds of elapsed time. With parallelization, it generated the plan in
1.3 CPU seconds and executed the plan in 62.4 seconds of elapsed time, a 39 percent reduction in execution
time.

6 Related Work

An alternative approach to addressing the problem of simultaneous execution is provided by work on temporal
planning [l, 41]. A temporal planner can handle the general problem of simultaneous parallel execution,
but this general solution has a cost, since just testing the satisfiability of a set of assertions is NP-hard
[6l]. The capabilities of a full-fledged temporal planner are necessary only if we need to explicitly reason

34

about the interaction between parallel actions. In this chapter we focus on the simpler problem of non-
interacting simultaneous execution, which does not require a full-blown temporal reasoner to handle. In
fact, partial-order planners appear to be well suited for problems in this class.

Another approach to this problem is to generate totally-ordered plans and then convert each plan into a
partially-ordered plan [59, 45]. The problem with this approach is that the particular choice of the totally-
ordered plan determines the parallel execution plan. As such, in order to consider the space of parallel
execution plans requires searching through the space of totally-ordered plans. Since a single partially-
ordered plan often corresponds to a number of totally-ordered plans, it will be harder to efficiently search
the space of parallel execution plans.

Recently, Backstrom [6] showed that the general problem of finding an optimal parallel execution plan is
NP-hard. We cannot escape from this complexity result; however, partial-order planners do avoid the NP-
hard subproblem of testing satisfiability and provide a more natural framework than total-order planners for
searching the space of parallel plans and encoding domain-specific control knowledge to guide the search.

7 Discussion

The idea of using partial-order planning to generate parallel execution plans has been around since the
early days of planning. What we have done in this chapter is to explicate the underlying assumptions and
situations where parallel execution is possible, characterize the differences in the plans produced by various
planning algorithms, and identify the changes required to use UCPOP as a parallel execution planner. We
have also shown that these ideas apply directly to the problem of generating parallel query access plans.

In future work we plan to tightly integrate the planning and execution components. This would allow the
system to dynamically replan actions that fail, while continuing to execute other actions that are already in
progress. In addition, we plan explore the problem of how to efficiently search the space of parallel execution
plans. First, we will consider domain-independent search strategies that produce the highest quality solution
that can be found within the time allotted. Second, we will exploit domain-specific knowledge to both restrict
the search space and guide the search.

35

Chapter 4

Reformulating Query Plans For
Multidatabase Systems

1 Introduction

An important and difficult problem is how to efficiently retrieve information from distributed, heterogeneous
multidatabase systems (Sheth and Larson, 1990). Retrieving and integrating distributed data often requires
processing and storage of large amounts of intermediate data, which can be very costly. This cost can be
reduced in some cases by selecting the appropriate sites for processing and employing query optimization
techniques (Apers, Hevner, and Yao, 1983; Jarke and Koch, 1984) to reduce the cost of individual queries.
However, these techniques are often inadequate since they rely on limited information about the syntactic
structure of the queries and databases. This information alone is not usually sufficient for reducing the cost
for complicated distributed, heterogeneous multidatabase queries.

This chapter addresses this problem of multidatabase retrieval by bringing to bear a richer set of knowl-
edge about databases to optimize multidatabase queries. The idea is to use semantic knowledge of the
contents of databases to reformulate queries into equivalent yet less expensive ones. Using the additional
semantic knowledge, the potential cost reduction is significantly greater than can be derived from optimiza-
tion based on the syntactical structure of queries alone. Since the knowledge required can be learned from
any database, this approach is very general.

Consider the following hypothetical example. Suppose that there are two databases in a multidatabase
system, one containing data about ports, and another about ships. A query is given to retrieve the data
of ports that have a depth that can accommodate tankers. This query may be very expensive because the
data about ports must be retrieved and compared with the draft of all the tankers. Suppose that the system
learned from the ship database that if the ship type is tanker, then its draft is at least 10 meters. With
this knowledge, the original query can be reformulated so that the system only retrieves data about ports
whose depth is greater than 10 meters. This additional constraint may significantly reduce the amount of
data retrieved from the ship database and thus substantially reduce the cost of executing the query.

In this chapter, we present an efficient algorithm to perform this type of semantic reformulation. We
implement the algorithm in the context of the SIMS project (Arens and Knoblock, 1992; Arens, Chee, Hsu,
and Knoblock, 1993). The SIMS project applies a variety of AI techniques and systems to build an integrated
intelligent interface between users and distributed, heterogeneous multiple data/knowledge-bases systems.
Given a multidatabase query, the planner of SIMS generates a partially ordered query plan to retrieve the
data. The reformulation algorithm presented here is used to reformulate this initial query plan to reduce
the cost of retrieval.

The query reformulation approach was initially proposed by (King, 1981) and (Hammer and Zdonik,
1980). Our approach differs from theirs and the following related work (Siegel, 1988; Chakravarthy, Grant
and Minker, 1990) in that we do not rely on heuristics to guide the search in a hill-climbing manner, which
often results in local optima. Moreover, we consider queries for data distributed over multiple sources, while
they only consider single database queries.

36

The remainder of this chapter is organized as follows. The next section describes the query planning in
SIMS. Section 3 reviews the semantic query optimization and our reformulation algorithm for single database
queries. Section 4 extends the idea to multidatabase queries. Section 5 shows our experimental results. We
compare our approach with related work in Section 6. Section 7 reviews the contributions of the work and
describes directions for future work.

2 Query Planning

Figure 4.1 shows an example SIMS semantic query. This query retrieves the name of the ports in Germany
that have both railroad capabilities at the port and refrigerator storage. SIMS accepts queries in the form
of a description of a class of objects about which information is desired. This description is composed of
statements in the Loom knowledge representation language (Macgregor, 1990). The user is not presumed to
know how information is distributed over the data- and knowledge bases to which SIMS has access — but
he/she is assumed to be familiar with the application domain, and to use standard terminology to compose
the Loom query. The interface enables the user to inspect the domain model as an aid to composing queries.
SIMS proceeds to decompose the user's query into a collection of more elementary statements that refer to
data stored in available information sources. SIMS then uses Prodigy (Carbonell, Knoblock, and Minton,
1991) to create a plan for retrieving the desired information, establishing the order and content of the various
plan steps/subqueries. Figure 4.2 shows an example partially ordered multidatabase query plan generated
by SIMS's query planner.

(retrieve (?naae)
(:and (port ?port)

(port.rail ?port "Y")
(port.refrig ?port Trefrig)
(> ?refrig 0)
(port.geocode ?port ?geocode)
(port.nane ?port ?name)
(geoloc ?geoloc)
(geoloc.geocode ?geoloc ?geocode)
(geoloc.countryJiaae ?geoloc
"Gentany")))

Figure 4.1: Example SIMS Semantic Query

Each node in the plan corresponds to a subquery to an individual data- or knowledge base. The edges
indicate the data flow direction from one database to another. Data pertaining to this query is spread over
two remote databases — one containing information about ports and the other about geographic locations.
In the figure, the two db-retrieve subqueries are queries to each of these databases. They will be translated
into their corresponding database query languages before being sent to the DBMSs. The loom-retrieve
subquery contains the interaction constraints involving values from the different remote databases. To
execute this query plan, the two db-retrieve subqueries will first be executed, and the retrieved data will
be loaded into Loom and translated into objects of semantic classes. Loom then evaluates the constraints
specified in the loom-retrieve to retrieve the resired answer from the sets of intermediate data.

Each subquery consists of conjunctions of constraints. In the upper subquery in Figure 4.2, the first
clause, (afsc_sea-port ?port), binds the variable ?port to the set of port instances in the database
afsc_sea_port. The second clause is a range constraint which restricts the attribute afscport.rail of
?port to have value Y. This indicates that the port has railroad capability. The clause (> ?refrig 0) is
another example of range constraint that constrains the ports to have non-zero refrigerator storage. Con-
straints that involves two or more variables are interaction constraints, such as the one in the loom-retrieve
subquery.

The most expensive part of the query plan is often moving intermediate data from remote databases to
the local Loom system. Consider the example in Figure 4.2, the cost of pairwise comparison in the final
subquery is proportional to the square of the amount of data items retrieved from the remote databases.

37

query plan

(DB-RETRIEVE ('.'port '.'name ?geocode))

(afsc_sea_port ?port)
(afsc_port.rail ?port "Y")
(afsc_port.refrig_storage ?port ?refrig)
(< 0 ?refrig)
(afsc_port.geocode ?port ?geocode)
(afsc_port.name ?port ?name)

(LOOM-RETRIEVE ('.'name))

(= ?geocode ?geocode2)

(DB-RETRIEVE ('.'geoloc ?geocode2))

(geo_geoloc ?geoloc)
(geo_geoloc.country_name ?geoloc "Germany")
(geo_geoloc.geocode ?geoloc ?geocode2)

Figure 4.2: Preliminary SIMS Plan for Example Query

If we can reformulate these subqueries such that the interaction constraints in the final subquery are also
considered, the amount of intermediate data will be reduced.

3 Subquery Reformulation

We start with the subquery reformulation algorithm and then extend it to reformulate the entire query
plan in the next section. The goal of the query reformulation is to use reformulation to search for the
least expensive query from the space of semantically equivalent queries to the original one. Two queries
are defined to be semantically equivalent (Chu and Lee, 1990; Siegel, 1988) if they return identical answer
given the same contents of the database. The reformulation from one query to another is by logical inference
using database abstractions, the abstracted knowledge of the contents of relevant databases. The database
abstractions describe the databases in terms of the set of closed formulas of first-order logic. These formulas
describe the database in the sense that they are true with regard to all instances in the database. We define
two classes of formulas: range information are propositions that assert the ranges of the values of database
attributes; and rules are of the form of implications with an arbitrary number of range propositions on
the antecedent side and one range proposition on the consequent side. Figure 4.3 shows a small set of the
database abstractions. In all formulas the variables are implicitly universally quantified.

The first two rules in Figure 4.3 state that for all instances, the value of its attribute country name
is "GERMANY" if and only if the value of its attribute country code is "FRG". With these two rules, we can
reformulate the subquery SUBQ1 in Figure 4.4 to the equivalent subquery SUBq2 by replacing the constraint on
geo_geoloc. country .name with the constraint on geo-geoloc. country xode. We can inversely reformulate
SUBq2 to SUBqi with the same rules. Given a subquery Q, let C\,... ,Ck be the set of range and interaction
constraints in Q, the following reformulation operators return a semantically equivalent query:

• Range Refinement: A range-information proposition states that the values of an attribute A are
within some range Rd- If a range constraint of A in Q constrains the values of A in some range Ä,,
then we can refine this range constraint by replacing the constraining range Ä, with R,; D Rd-

• Constraint Addition: Given a rule A —<• B, if Q implies A then we can add constraint B to Q.

• Constraint Deletion: Given a rule A — B, and Q implies A. If there exists C, in' Q and B implies
d, then we can delete C, from Q.

38

• Subquery Refutation: Given a rule A —► B, and Q implies A, if there exists d in Q and B implies

->Ci, then we can assert that Q will return NIL.

Replacing constraints is treated as a combination of addition and deletion. Note that these reformula-
tion operators do not always lead to more efficient versions of the subquery. Knowledge about the access
cost of attributes is required to guide the search. For example, suppose the only index is placed on the
attribute geo-geoloc. countryJiame, then reformulate SUBQ2 to SUBQ1 will reduce the cost from 0(n)
to O(k), where n is the size of the database and k is the amount of data retrieved. However, if either
geo-geoloc. country .name and geo_geoloc. country .code are not indexed, then we will prefer the lower
cost short string attribute geo-geoloc. country jcode. In this case, reformulating SUBQ1 to SI BQ2 be-
comes more reasonable. Figure 4.5 shows our subquery reformulation algorithm. We explain the algorithm
below by showing how SUBQ-REFORMULATION reformulates the subquery SUBQ1, the lower query in the query

plan in Figure 4.2.

Range Information:
1: (geo-geoloc.country_name €

("Taiwan" "Italy" "Denmark" "Germany"
"Turkey"))

2: (afscport .geocode g
("BSRL" "HNTS" "FGTW" "VXTY" "WPKZ" "XJCS"))

3:(0 < afscport.reirig-storage < 1000)

Rules:
1: (geo-geoloc. country .name = "GERMANY")

==> (geo_geoloc.countryjcode = "FRG")
2: (geo-geoloc.country_code = "FRG")

=*• (geo-geoloc. country .name = "Germany")
3: (geo_geoloc.country-Code = "FRG")

==> (47.15 < geo_geoloc.latitude < 54.74)
4: (afscport.rail = "Y")

=*• (afscport.geocode £
("BSRL" "HNTS" "FGTW"))

5: (6.42 < geo_geoloc.longitude < 15.00)
A (47.15 < geo_geoloc.latitude < 54.74)
—;> (geo-geoloc. country jcode = "FRG")

Figure 4.3: Example of Database Abstractions

There are three input arguments in this algorithm. The first argument Subquery is the subquery to
be reformulated. Another argument DB-Knowledge contains the set of range information and rules that
describe the database queried by the input subquery. And Cost-Hodel contains the knowledge to decide
the execution cost of constraints. Initially, all the range constraints are refined by applying the range
refinement operator. The reason why we want to refine the constraining ranges is to make the subquery
more likely to match many rules. This is because after range refinement, the constraining ranges are smaller
and more likely to imply the antecedent of a rule. Range refinement also reduces comparisons in evaluating
constraints on string type attributes. The only range constraint in SUBQ1 is on geo-geoloc.countryjname,
and its constrained value GERMANY is within the range of possible values (see the first formula of range

information). Thus, this constraint is unchanged.
The second step is to match all applicable rules from the set of database abstractions using the reformu-

lation operators defined above. If a Subquery Refutation rule is found then the subquery is refuted and
the algorithm halts immediately. When a Constraint Deletion rule is found, then some constraints in the
subquery are redundant and can be deleted from the subquery without changing the semantics. We only
put the constraint in the Inf erred-Set instead of actually deleting it from the subquery. This is because,
its redundancy is due to the logical reason, not the performance consideration. More knowledge and analysis
is required to decide whether it should be actually deleted. In the case that a Constraint Addition rule is

39

SUBQ1:
(retrieve (?geoloc ?geocode2)
(:and (geo_geoloc?geoloc)

(geo_geoloc.geocode ?geoloc ?geocode2)
(geo_geoloc.country-name ?geoloc
"Germany")))

SUBQ2:
(retrieve (?geoloc ?geocode2)
(:and (geo_geoloc?geoloc)

(geo-geoloc.geocode ?geoloc ?geocode2)
(geo_geoloc.country_code ?geoloc
"FRG")))

SUBQ3:
(retrieve (?geoloc ?geocode2)
(:and (geo_geoloc?geoloc)

(geo_geoloc.geocode ?geoloc ?geocode2)
(geo_geoloc.country_code ?geoloc "FRG")
(geo_geoloc.latitude ?geoloc ?latitude)
(>= Tlatitude 47.15)
(<= ?latitude 54.74)))

Figure 4.4: Equivalent Subqueries

SUBQ-REFORMULATION (Subquery, DB-Knowledge, Cost-Model)
1.refine range constraints, if Subquery refuted, return Nil;
2.for all applicable rules A —» B in DB-Knowledge:

if Subquery refuted, return NIL;
else add B to Inferred-Set, add (B,A) to Dependency-List;

3.for all B in Inferred-Set in the order of their cost:
if B is not indexed and 3 (B,A) in Dependency-List

delete B from Subquery, delete (B,A) from Dependency-List;
replace all (C.B) in dependency list with (C,A) ;

4.return (reformulated Subquery, Inferred-Set)
END.

Figure 4.5: Subquery Reformulation Algorithm

found, we add the constraint to the subquery and also put it in the Inferred-Set. The first rule in Figure 4.3
is matched and fired for SUBQ1 and we get an additional constraint (geo_geoloc. countryjcode ?geoloc
"FRG"), which is added to the Inferred-Set. Then the second and third rules are matched because of the ad-
ditional constraint on country code. The constraints geo-geoloc. latitude and geo-geoloc. country .name
are added to the Inferred-Set.

The third step is to select the constraints in Inferred-Set to delete from the subquery. The selection is
based on the constraint's relative estimated execution cost which is computed by the type of the constraints
(range constraint, or interaction constraint), the type of the attribute's values (integer, string, and their
length), and whether they are indexed. The information required for this estimation is available from
the input cost-model provided by SIMS. The constraints in the Inferred-Set are sorted into the partial
order of their cost and then deleted in this order until the total cost of the remaining constraints is less
than the original subquery. To preserve the semantics of the subquery, we keep a dependency list of the
inferred constraints to avoid deleting all constraints in an implication cycle. In our example, the attribute
geo_geoloc. countryjiame is deleted because its long string type is the most expensive. The next most
expensive constraint is the one on attribute geo-geoloc. countryxode. However, it should be preserved
because the cause of its deletability (i.e., the constraint on geo-geoloc. country_name) was just deleted.
Finally, the constraint on geo-geoloc.latitude is kept because it is an indexed attribute that will improve
the efficiency of the subquery. The algorithm returns the reformulated subquery SUBQ3 as shown in
Figure 4.4, as well as the Inferred-Set, which will be used for reformulating the succeeding subqueries

40

in the query plan.

Not all rules are matched directly from the database abstractions. For interaction constraints, we have
axioms for set inclusion and mathematical relations. For example, if there is an interaction constraint
(> ?Y IX) and we have rules or range information which assert that (> IX 17), then we can add a new
constraint (> ?Y 17) because (> IX 17) A (> ?Y IX) => (> ?Y 17). These axioms are implemented as
inference procedures for efficiency.

The worst case complexity of SÜBQ-REFORHULATION is 0(R2N*max(M, log N)), where M is the maximum
length of the antecedent of the rules, N is the greatest number of constraints in the partially reformulated
query, that is, the number of original constraints plus the number of added constraints in Inf erred-Set
before final selection, and R is the size of DB-Knowledge. The worst case cost to match a rule is 0(MN).

Suppose the system matches applicable rules linearly in the set of the database abstractions, all rules must
be matched and this takes RMN. The complexity of Step 2 is thus O(R-MN), in the case that only one
rule is fired in every scan of the database abstractions, and every rule is eventually fired. The complexity
of Step 3 is 0(N log N), the cost of sorting. Deleting constraints in the Inf erred-Set in their order of
estimated cost takes O(N).

Because the added constraints are range constraints of an attribute, the number of constraints will not
exceed the number of the attributes of the relevant database tables.1 Therefore, N is small compared to
R. In the average case, the rule match cost is about 0(N), since the lengths of rules are usually less
than 3. The database abstractions are normally scanned less than 3 times. Therefore, R dominates the
complexity of the algorithm. With small values of R, this algorithm will not introduce significant overhead
to the cost of query processing. To alleviate the impact of a large R on the system's performance, we can
adopt sophisticated indexing and hashing techniques in rule matching, or restrain the size of the database
abstractions by removing database abstractions with low utility.

QPLAN-REFORMULATION(Plan, DB-Knowledge, Cost-Model)
l.KB — DB-Knowledge;
2.for all subqueries S in the order specified in Plan:

(S',Inferred-Set) «-
SUBQ-REFORMULATION(S,KB,Cost-Model);

if S' refuted, return Nil;
else update KB with Inferred-Set; update Plan with S';

3.for all subqueries S whose semantics are changed:
SUBQ-REFORMULATIOH(S, DB-Knowledge, Cost-Model);

4.return reformulated Plan
END.

Figure 4.6: Query Plan Reformulation Algorithm

4 Query Plan Reformulation

We can reformulate each subquery in the query plan with the subquery reformulation algorithm and im-
prove their efficiency. However, the most expensive aspect of the multidatabase query is often processing
intermediate data. In the example query plan in Figure 4.2, the constraint on the final subqueries involves
the variables ?geocode and ?geocode2 that are bound in the preceding subqueries. If we can reformulate
these preceding subqueries so that they retrieve only the data instances possibly satisfying the constraint
(= ?geocode ?geocode2) in the final subquery, the intermediate data will be reduced. This requires the
query plan reformulation algorithm to be able to propagate the constraints along the data flow paths in the
query plan. The query plan reformulation algorithm defined in Figure 4.6 achieves this by updating the
database abstractions and rearranging constraints. We explain the algorithm below using the query plan in
Figure 4.2.

1 If there axe two constraints on the same attribute, we can always apply the range refinement operator on them and
merge them together.

41

The algorithm takes three input arguments. The argument Plan is the input query plan, DB-Knowledge
and Cost-Model are denned as in SUBQ-REFORMULATION. After the initialization step, in the second step,
the algorithm reformulates each subquery in the partial order (i.e., the data flow order) specified in the
plan. The two db-retrieve subqueries are reformulated first. The database abstractions are updated
with Inf erred-Set which is returned from SUBQ-REFORMULATION to propagate the constraints to later
subqueries. For example, when reformulating the upper subquery, the fourth rule is fired for adding the
constraint on the variable ?geocode which is bound to the attribute afsc_port.geocode. Although this
long string type constraint is then selected to be deleted, it reveals the range of af scport .geocode in
the output data of the upper subquery. This range information together with other inferred constraints
in Inf erred-Set replaces the original range information to update the initial database abstractions. In
this example, the second formula of the initial range information is replaced by (afsc_port .geocode £
("BSRL" "HNTS" "FGTW")), the consequent condition of the fourth rule. The algorithm uses this updated
range information to reformulate the final subquery and reduces the possible values from six to three. In
addition, the constraint (af sc_port .rail ?port "Y") in the upper subquery is propagated along the data

flow path to its succeeding subquery implicitly.
Now that the updated range information for ?geocode is available, the subquery reformulation algorithm

can infer from the constraint (= ?geocode ?geocode2) a new constraint (member ?geocode2 ("BSRL"
"HNTS" "FGTW")) and add it to the final subquery. However, this constraint should be executed by the
remote DBMS instead of by the local Loom system, because it does not involve interaction with different
databases. In this case, when updating the query plan with the reformulated subquery, the algorithm
locates where the constrained variable of each new constraint is bound, and inserts the new constraint in
the corresponding subqueries. In our example, the variable is bound by (geo_geoloc.geocode ?geoloc
?geocode2) in the lower subquery in Figure 4.2. The algorithm will insert the new constraint on ?geocode2
in that subquery. In this way, the constraints (afsc_port.rail ?port "Y") and (= ?geocode ?geocode2)
are propagated back along the data flow path to the lower subquery. This process of new constraint insertion

is referred to as constraint rearrangement.
However, the semantics of the rearranged subqueries, such as the lower subquery in this example, are

changed because of the newly inserted constraints. (Note, that the semantics of the overall query plan remain
the same.) After all the subqueries in the plan have been reformulated, Step 3 of the algorithm reformulates
these subqueries again to improve their efficiency. In our example, the reformulation algorithm is applied
again to the lower subquery, but no reformulation is found to be appropriate. The final reformulated query

plan is shown in Figure 4.7.

1/
query plan \ i

(DB-RETRIEVE (?port ?name ?geocode))

(afsc_sea_ports ?port)
(afsc_ports.rail ?port "Y")
(afsc_ports.refrig ?port ?refrig)
(< 0 ?refrig)
(afsc_ports.geocode ?port ?geocode)
(afsc_ports.name ?port ?name)

(DB-RETRIEVE (?geoloc ?geocode2))

(geo_geoloc ?geoloc)
(geo_geoloc.country_code ?geoloc "FRG")
(geo_geoloc.geocode ?geoloc ?geocode2)
(geo_geoloc.latitude ?geoloc ?latitude)
(>= ?latitude 47.15) (<= latitude 54.74)
(member ?geocode2 (BSRL HNTS FGTW))

(LOOM-RETRIEVE (?name))

(= ?geocode ?geocode2)

Figure 4.7: Reformulated SIMS Plan for Example Query

This query plan is more efficient and returns the same answer as the original one. In our example, the

42

lower subquery is more efficient because of the new constraint on the indexed attribute geo_geoloc .latitude
(by SUBQ-REFORMULATION). The intermediate data items are reduced because of the new constraint on the
attribute geo_geoloc.geocode. The logical rationale of this new constraint is derived from the constraints
in the other two subqueries: (afscport.rail ?port "Y") and (= ?geocode ?geocode2), and the fourth
rule in the database abstractions.

The worst case complexity of QPLAN-REFORMULATION is 0(SR2N*max(M, log N)), where S is the number
of subqueries in the query plan, and R?N * max(M, log N) is the cost of SUBQ-REFORMULATION. In the
average case, 5 is less than 5, so the dominating factor is still the cost of the subquery reformulation
R2N * max(M, log N), in which R is the most important factor. Consequently, if R is relatively small, or
we can match rules efficiently, this algorithm is efficient enough to be neglected in the total cost of query
processing.

5 Experimental Results
The reformulation algorithms are implemented in the context of the SIMS system, which, for the purpose
of our experiments, is connected with two distributed Oracle databases. Table 4.1 shows the size of these
databases. The queries used were selected from the set of SQL queries constructed by other users of the
databases. Table 4.2 lists the features of these queries. The first three queries are single database queries.
The remaining queries access both databases, so they have two database subqueries and one subquery for
evaluating interaction constraints and performing joins in Loom. The number of constraints includes the
number of range and interaction constraints. The number of answers may not equal the number of retrieved
instances, because the answers are results of projection on specified attributes and all duplicates are removed.
Query 3 and 6 are null queries.

Database Contents Instances Size(MByte)

Geo Geographical
locations

56708 rows
in 16 tables

10.48

Assets Planes,ships
other assets

5728 rows
in 14 tables

0.51

Table 4.1: Database Size

The performance statistics are shown in Table 4.3. All entries are based on an average of 10 trial
executions. The number of rules fired counts both range information and rules used in reformulation. Note
that a rule may be fired twice or more in Step 2 and 3 of the QPLAN-REFORHULATION algorithm. The amount of
intermediate data indicated for each multidatabase query is the total number of the data instances retrieved
from both databases and transferred to the SIMS system.

Query (short descriptions) Da.ta.ba.se
Accessed

Number of
Subqueries

Number of
Constraints

Number of
Answers

l:Airports: runway>8000, concrete surface Geo 1 2 2
2:Locations: location code in state gsa code "TW" Geo 1 2 147
3:Wharves: container cranes and rail track Geo 1 4 0
4:Wharves: container/breakbulk ships Geo,Assets 3 10 6
5:Ports: accommodate ship with code " 1240" Geo,Assets 3 4 2
6:Ports: accommodate ship "1207", mob "10C" Geo,Assets 3 4 0
7:Ships: dock in channels of port in Long Beach Geo,Assets 3 3 28
8:Ports & Ships: berths storage > ship capacity Geo,Assets 3 1 9
9:Ports & Ships:ship length, fit berth type "TE" Geo, Assets 3 4 20
10:Ports k. Ships:Tunisia ports,frozen cargo unload Geo, Assets 3 5 29

Table 4.2: Experiment Multidatabase Queries

The most noticeable cost reduction is achieved by reformulation when the system can determine the

43

answers of queries from its knowledge. In these queries, the system can eliminate the corresponding database
access. For example, the system refutes Query 3 and 6 and returns the answer NIL immediately. In Query 7,
the system asserts the answer of a database subquery. This subquery is eliminated, and the query reduces
to a single database query. Query 8, 9, and 10 are typical multidatabase queries, the system reformulates
them and eliminates a large amount of intermediate data. Query execution time is thus reduced by about
a factor of 2. Query 2 is an expensive single database query. The system reformulates it by introducing a
constraint on an indexed attribute and saves a considerable amount of time.

query 1 2 3 4 5 6 7 8 9 10

planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8
reformulation time 0.1 0.1 0.0 0.5 0.1 0.0 0.0 0.1 0.1 0.3
rules fired (times) 37 18 11 126 63 8 17 15 19 71

intermediate data w/o Ref - - - 145 41 1 810 956 808 810
intermediate data w/ Ref* - - - 145 35 0 28 233 320 607

query execution time w/o Ref 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8
query execution time w/ Ref 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2
total elapsed time w/o Ref 0.8 8!5 1.2 14.4 12.4 2.7 251.7 402.3 256.3 259.6
total elapsed time w/ Ref 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 196.3

aw/o Ref = Without reformulation.

bvij Ref = With reformulation.

Table 4.3: Experimental Results

There are cases where the reformulation did not achieve significant cost reduction. The first case is when
the query is already very efficient. For example, in Query 1, the query execution time without reformulation
is very short, and reformulation appears to be unnecessary. Another case is when the system can not
reduce the amount of intermediate data, as in Query 4 and 5. This is due to a lack of sufficient database
abstractions, or it may just be impossible to reduce the cost for some particular queries and databases.
However, as indicated in the experimental results, the reformulation time is so short that even when no
significant cost reduction can be achieved, the overhead will not degrade the performance of retrieval. To
sum up, the reformulation approach is effective and can achieve a substantial cost reduction.

In this experiment, the system uses a-set of database abstractions consisting of 203 rules about range
information and 64 implication rules for every query plan. These database abstractions were prepared by
compiling the databases. For range information, the compiling procedure summarizes the range of each
attribute of the database by extracting the minimum and maximum values for numerical attributes, and
enumerating the possible values for string type attributes. If the number of possible values exceeds a
threshold, this range information is discarded. The implication rules were prepared by a semi-automatic
learning algorithm similar to the KID3 (Piatetsky-Shapiro, 1991). This algorithm takes the user input
condition A, and learns a set of rules of the form A —► B from the database. The algorithm retrieves the
data that satisfy the condition A, then compiles the data for the conclusions B.

6 Related Work

The semantic query optimization approach has been studied extensively in previous work (Chakravarthy,
Grant, and Minker, 1990; Siegel, 1988; King, 1981; Hammer and Zdonik, 1980). These systems demonstrate
the benefit of using knowledge of database contents to optimize queries. The most significant difference
between our approach and theirs is that they rely on heuristics, and search for the optimal equivalent query
in a hill-climbing manner, while our approach adopts a delayed-commitment strategy. Their systems search
for the optimal query in the space of equivalent queries of the given query. Whenever a rule is fired, their
systems will generate a new equivalent query, until an optimal one is found. This leads to a combinatorial
explosion of equivalent queries among which the system needs to select. To overcome this problem, they

44

use heuristics and hill-climbing to prune the search space, but as a consequence, the reformulated query is
usually only locally optimal. Sometimes, this process causes infinite loops that require more heuristics to
resolve (Siegel, 1988).

To illustrate the problem of previous work, consider the following situation. Suppose there are two rules
in the set of database abstractions, A -+ B, and B —► C. Suppose we are given a query Q which implies A,
and the rule A —+ B is the only applicable rule. Rule B-+C will be applicable if B is added to Q by firing
A —► B. Suppose further that Q and C are contradictory, and B is a costly constraint. For hill-climbing
systems, A—* B will never be fired since adding B will increase the cost. Thus, fl-»C will not be applicable.
As a result, the system can not figure out that the answer of the query is null, unless it can backtrack. But
backtracking requires the system to maintain a large set of equivalent queries. This overhead will make the
system impractical.

In contrast, our subquery reformulation algorithm does not generate queries each time a rule is fired.
Instead, we fire all applicable rules at once and collect the candidate constraints in a list Inferred-Set
and then select only those that will contribute to the cost reduction. In the example above, our algorithm
can consider both rules and refute the query without maintaining a large set of equivalent queries. This
approach is a delayed-commitment strategy because the system delays the reformulation until it has enough
information to make a decision. Although the algorithm fires all applicable rules, it is still polynomial. The
empirical results show that it is efficient. Moreover, it is fiexihle because no additional specific heuristics are
required. The list Inferred-Set turns out to be the information needed to propagate constraints among
subqueries. Subsequently, the subquery reformulation is easily extended to query plan reformulation.

Compared to conventional syntactical optimization techniques for distributed database systems, our ap-
proach differs in both the knowledge brought to bear and the way queries are optimized. (Apers, Hevner,
and Yao, 1983; Jarke and Koch, 1984; Ullman, 1988) describe approaches that use the semi-join operation to
join two database relations in distributed databases. The semi-join techniques propagate constraints by com-
puting a semi-join before performing the actual join. Our approach propagates constraints from knowledge
of database abstractions without accessing remote databases, and thus has less overhead then the semi-join.
The semi-join techniques may reduce intermediate data when the result of semi-join is significantly smaller
than the entire relevant relations. However, there are situations when semi-join degrades the performance.
The system needs to know the reduction factors of each semi-join to decide a semi-join schedule that will save
execution cost. To compute reduction factor requires knowledge of the size of relevant relations and their
joining path. It is usually difficult to estimate the size of an intermediate relation when the query is com-
plicated. Some semi-join approaches assume a unrealistically simplified model to reduce the overhead, but
to make semi-join approach effective, the system still need to bring to bear extensive statistical knowledge
to estimate relation sizes (Jarke and Koch, 1984).

Another difference between our approach and the conventional distributed query optimization techniques
is that they assume a homogeneous environment. They can transfer data from one site to another without
any transformation. They can also distribute a relation into fragments and store them in different sites. Data
distribution strategy and execution order scheduling are their major concerns. We assume a heterogeneous
environment, so we focus on flexible reformulation on the semantic aspects of queries. In the future, we also
intend to include size and system configuration information in our planning and reformulation algorithm to
optimize query plans on the execution order.

7 Conclusion

This chapter presented a problem reformulation approach to reducing the cost of domain-modeled multi-
database queries. The reformulation is based on logical inferences from database abstractions. This simple,
efficient algorithm reduces the cost of the query plan by reducing intermediate data and refining each sub-
query. This is achieved without database implementation dependent heuristic control. Empirical results
demonstrate that this algorithm can provide significant reductions in the cost of executing query plans.

One of the limitations of our implementation is that the rule match algorithm is linear to the size of
the database abstractions. A very large set of database abstractions could make the reformulation costly.
To avoid this problem, we plan to adopt a more sophisticated rule match algorithm, such as the RETE
algorithm (Forgy, 1982), or its more efficient variations, to reduce this impact.

45

One important issue not addressed in this chapter is how to automatically acquire the database abstrac-
tions for reformulation (Siegel, 1988). We are now developing a learning algorithm that is driven by example
queries (Hsu and Knoblock, 1993). We plan to use inductive learning (Cai, Cercone, and Han 1991; Haussler,
1988; Michalski, 1983) to identify the costly aspects of the example subqueries and propose candidate rules.
The candidate rules will then be refined and learned by the system. After the system has learned a set of
database abstractions, it needs to monitor their utility and validity to maintain the system's performance.
We will address this issue in the future work.

46

Chapter 5

Rule Induction for Semantic Query
Optimization

1 Introduction
Speeding up a system's performance is one of the major goals of machine learning. Explanation-based
learning is typically used for speedup learning, while applications of inductive learning are usually limited
to data classifiers. In this chapter, we present an approach in which inductively learned knowledge is used
for semantic query optimization to speed up query answering for data/knowledge-based systems.

The principle of semantic query optimization [27] is to use semantic rules, such as all Tunisian seaports
have railroad access, to reformulate a query into a less expensive but equivalent query, so as to reduce the
query evaluation cost. For example, suppose we have a query to find all Tunisian seaports with railroad access
and 2,000,000 ft3 of storage space. From the rule given above, we can reformulate the query so that there
is no need to check the railroad access of seaports, which may save some execution time. Many algorithms
for semantic query optimization have been developed [22, 27, 48, 50]. Average speedup ratios from 20 to
40 percent using hand-coded knowledge are reported in the literature. This approach to query optimization
has gained increasing attention recently because it is applicable to almost all existing data/knowledge-base
systems. This feature makes it particularly suitable for intelligent information servers connected to various
types of remote information sources.

A critical issue of semantic query optimization is how to encode useful background knowledge for refor-
mulation. Most of the previous work in semantic query optimization in the database community assume that
the knowledge is given. [27] proposed using semantic integrity constraints for reformulation to address the
knowledge acquisition problem. Examples of semantic integrity constraints are The salary of an employee
is always less than his manager's, and Only female patients can be pregnant. However, the integrity rules
do not reflect properties of the contents of databases, such as related size of conceptual units, cardinality
and distribution of attribute values. These properties determine the execution cost of a query. Moreover,
integrity constraints rarely match query usage patterns. It is difficult to manually encode semantic rules
that both reflect cost factors and match query usage patterns. The approach presented in this chapter uses
example queries to trigger the learning in order to match query usage patterns and uses an inductive learning
algorithm to derive rules that reflect the actual contents of databases.

An important feature of our learning approach is that the inductive algorithm learns from" complex real-
world information sources. In these information sources, data objects are clustered into conceptual units.
For example, the conceptual unit of a relational databases is a relation, or simply a table. For object-based
databases, it is a class. In description-logic knowledge bases [9], data instances are clustered into concepts.
Each conceptual unit has attributes that describe the relevant features. Most inductive learning systems,
such as ID3, assume that relevant attributes are given. Consider a database with three relations: car,
person, and company. We might want to characterize a class of persons by the company they work for,
or by the cars they drive, or by the manufacturers of their cars. In these cases, we need attributes from
different relations to describe a desired class of objects. Previous studies [2, 46] have shown that the choice

47

of instance language bias (i.e., selecting an appropriate set of attributes) is critical for the performance of
an inductive learning system. To address this problem, we propose an inductive learning algorithm that can
select attributes from different relations automatically.

The remainder of this chapter is organized as follows. The next section illustrates the problem of semantic
query optimization for data/knowledge bases. Section 3 presents an overview of the learning approach.
Section 4 describes our inductive learning algorithm for structural data/knowledge bases. Section 5 shows the
experimental results of using learned knowledge in reformulation. Section 6 surveys related work. Section 7
reviews the contributions of the chapter and describes some future work.

2 Semantic Query Optimization

Semantic query optimization is applicable to various types of database and knowledge base. Nevertheless, we
chose the relational model to describe our approach because it is widely used in practice. The approach can
be easily extended to other data models. In this chapter, a database consists of a set of primitive relations.
A relation is then a set of instances. Each instance is a vector of attribute values. The number of attributes
is fixed for all instances in a relation. The values of attributes can be either a number or a symbol, but with
a fixed type. Below is an example database with two relations and their attributes:
geoloc (name,glcxd, country, latitude, longitude),
seaport (name, glc.cd, storage, silo, crane,rail).

where the relation geoloc stores data about geographic locations, and the attribute glc_cd is a geographic
location code.

The queries we are considering here are Horn-clause queries. A query always begins with the predicate
answer and has the desired information as argument variables. For example,
Ql: answer(?name):-

geoloc(?name ,?glcxd, "Malta" ,_,_),
seaport (_, ?glc_cd,?storage,_,_,_) ,
?stprage > 1500000. .

retrieves airgeographicai location names in Malta. There are two types of literals. The first type corresponds
to a relation stored in a database. The second type consists of built-in predicates, such as > and member.
Sometimes they are referred to as extensional and intentional relations, respectively (see [56]). We do not
consider negative literals and recursion in this chapter.

Semantic rules for query optimization are also expressed in terms of Horn-clause rules. Semantic rules
must be consistent with the contents of a database. To clearly distinguish a rule from a query, we show
queries using the Prolog syntax and semantic rules in a standard logic notation. A set of example rules are
shown as follows:
Rl: geoloc (_,_, "Malta",?latitude,J

=>• ?latitude > 35.89.

R2: geoloc (_,?glc-cd,"Malta",_,J
=> seaport(_,?glc_cd,_,_,., J .

R3: seaport(_,?glc_cd,?storage,_,_,-) A
geoloc (_, ?glc_cd, "Malta", _, _)
=>■ ?storage > 2000000.

Rule Rl states that the latitude of a Maltese geographic location is greater than or equal to 35.89. R2 states
that all Maltese geographic locations in the database are seaports. R3 states that all Maltese seaports have
storage capacity greater than 2,000,000 ft3. Based on these rules, we can infer five equivalent queries of Ql.
Three of them are:
Q21: answer(?name):-

geoloc(?name,?glc_cd,"Malta",_,_),
seaport (_,?glc_cd,_,_,_,_) .

Q22: answer(?name):-
geoloc(?name,_, "Malta",_,_).

48

Q23: answer(?name):-

geoloc(?name,_,"Malta",?latitude,_) ,
?latitude < 35.89.

Q21 is deduced from Ql and R3. This is an example of constraint deletion reformulation. From R2, we
can delete one more literal on seaport and infer that Q22 is also equivalent to Ql. In addition to deleting
constraints, we can also add constraints to a query based on rules. For example, we can add a constraint on
?latitude to Q22 from Rl, and the resulting query Q23 is still equivalent to Ql. Sometimes, the system can
infer that a query is unsatisfiable because it contradicts a rule (or a chain of rules). It is also possible for the
system to infer the answer directly from the rules. In both cases, there is no need to access the database to
answer the query, and we can achieve nearly 100 percent savings.

Now that the system can reformulate a query into equivalent queries based on the semantic rules, the
next problem is how to select the equivalent query with the lowest cost. The shortest equivalent query is
not always the least expensive. The exact execution cost of a query depends on the physical implementation
and the contents of the data/knowledge bases. However, we can usually estimate an approximate cost from
the database schema and relation sizes. In our example, assume that the relation geoloc is very large and
is sorted only on glccd, and assume that the relation seaport is small. Executing the shortest query Q22
requires scanning the entire set of geoloc relations and is thus even more expensive than executing the
query Ql. The cost to evaluate Q21 will be less expensive than Ql and other equivalent queries because a
redundant constraint on ?storage is deleted, and the system can still use the sorted attribute glc_cd to
locate the answers efficiently. Therefore, the system will select Q21.

Although the number of equivalent queries grows combinatorially with the number of applicable rules, se-
mantic query optimization can be computed without explicitly searching this huge space. We have developed
an efficient reformulation algorithm that is polynomial in terms of the number of applicable rules. We also
extended this algorithm to reformulate multidatabase query access plans and showed that the reformulations
produce substantial performance improvements [22].

We conclude this section with the following observations on semantic query optimization.

1. Semantic query optimization can reduce query execution cost substantially.

2. Semantic query optimization is not a tautological transformation from the given query; it requires
nontrivial, domain-specific background knowledge. Learning useful background knowledge is critical.

3. Since the execution cost of a query is dependent on the properties of the contents of information sources
being queried, the utility of a semantic rule is also dependent on these properties.

4. The overhead of reformulation is determined by the number of applicable rules. Therefore, the utility
problem [35] is likely to arise and the learning must be selective.

3 Overview of the Learning Approach

This section presents an overview of our learning approach to address the knowledge acquisition problem of
semantic query optimization. The key idea of our learning approach is that we view a query as a logical
description (conjunction of constraints) of the answer, which is a set of instances satisfying the query. With
an appropriate bias, an inductive learner can derive an equivalent query that is less expensive to evaluate
than the original. Based on this idea, the learning is triggered by an example query that is expensive to
evaluate. The system then inductively constructs a less expensive equivalent query from the data in the
databases. Once this equivalent query is learned, the system compares the input query and constructed
query, and infers a set of semantic rules for future use.

Figure 5.1 illustrates a simple scenario of this learning approach. An example query is given to a small
database table with 3 instances. Evaluating this query will return an instance, which is marked with a
'' + " sign. Conceptually, instances in this table are labeled by the query as positive (answers) or negative
(non-answers). We can use the inductive learning algorithm to generate an equivalent alternative query with
appropriate biases so that the generated query is less expensive to evaluate. The generated alternative query
should be satisfied by all answer instances and none of the others. This guarantees the equivalence of the two

49

A1 A2 A3
A 1 2
B 1 2
Z 0 2

Equivalent Queries

Inductive Description Formation

Operationalization (A1=Z)
(A1=Z|

(A2 < 0)
(A3 = 2)

(A2 < 0} A (A3=2) I => (Al = Z)

Rules to be Learned

Figure 5.1: An Simplified Example Learning Scenario

queries with regard to the current status of the data/knowledge base. Suppose that in this simple database,
a short query is always less expensive to execute. The system will bias the learning in favor of the shortest
description and inductively learn an alternative query (Al = 'Z'). The inductive learning algorithm will
be discussed in the next section.

The equivalence of the alternative query and the example query provides a training example of refor-
mulation. In other words, this training example shows which equivalent query an input query should be
reformulated into. The operationalization component will deduce a set of rules from the training example.
This process consists of two stages. In the first stage, the system uses a logical inference procedure to
transform the training example into the required syntax (Horn clauses). This syntax is designed so that the
query reformulation can be computed efficiently. The equivalence between the two queries is converted to
two implication rules:

(l)(A2 < 0) A (A3 = 2) => (Al = 'Z')

(2)(A1 = 'Z') =>■ (A2 < 0) A (A3 = 2)

Rule (2) can be further expanded to satisfy our syntax criterion:

(3)(A1 = lZ') => (A2 < 0)

(4)(A1 - 'Z') ==>■ (A3 = 2)

After the transformation, we have proposed rules (1), (3), and (4) that satisfy our syntax criterion. In the
second stage, the system tries to compress the antecedents of rules to reduce their match costs. In our
example, rules (3) and (4) contain only one literal as antecedent, so no further compression is necessary.
These rules are then returned immediately and learned by the system.

If the proposed rule has more than one antecedent literal, such as rule (1), then the system can use the
greedy minimum set cover algorithm [17] to eliminate unnecessary constraints. The problem of minimum
set cover is to find a subset from a given collection of sets such that the union of the sets in the subset is
equal to the union of all sets. We rewrite rule (1) as

(5)-(Al = 'Z') => ->(A2 < 0) V -(A3 = 2).

The problem of compressing rule (1) is thus reduced to the following: given a collection of sets of data
instances that satisfy -i(A2 < 0) V ->(A3 = 2), find the minimum number of sets that cover the set of
data instances that satisfy -i(Al = 'Z'). Since the resulting minimum set that covers ->(A1 = 'Z') is
->(A2 < 0), we can eliminate -.(A3 = 2) from rule (5) and negate both sides to form the rule

(A2 < 0) =>• (Al = 'Z').

50

geolocC'Safaqis", 8001, Tunisia, ...)

geoloc("Valletta", 8002, Malta, ...) +

geolocC'Marsaxlokk", 8003, Malta, ...) +

geoloc ("San Pawl", 8004, Malta, ...) +

geoloc("Marsalforn", 8005, Malta, ...) +

geoloc("Abano", 8006, Italy, .. .)

geoloc ("Torino", 8007, Italy, ...)

geoloc("Venezia", 8008, Italy, ...)

seaport("Marsaxlokk" 8003

seaport("Grand Harbor" 8002

seaport("Marsa" 8005

seaport("St Pauls Bay" 8004

seaport("Catania" 8016

seaport("Palermo" 8012

seaport("Traparri" 8015

seaport("AbuKamash" 8017

Figure 5.2: The Database Fragment

4 Learning Alternative Queries

The scenario shown in Figure 5.1 is a simplified example where the database consists of only one table.
However, real-world databases and knowledge bases usually decompose their application domain into multiple
conceptual units. One could try to combine every conceptual unit that could be relevant into a large table,
then apply the learning system for tabular databases directly. However, learning from a large table is too
expensive computationally. Such an approach will not work unless a small number of relevant attributes are
correctly identified before learning.

In this section, we discuss inductive learning for Horn-clause queries from a database with multiple
relations. Our learning problem is to find an alternative query to characterize a class of instances defined
in a relation. In standard machine learning terms, this subset of instances are labeled as positive examples,
and the others are negative examples.

Before we discuss the algorithm, we need to clarify two forms of constraints implicitly expressed in a
query. One form is an internal disjunction, a set of disjunctions on the values of an attribute. For example,
an instance of geoloc satisfies:
Cl:
geoloc (?name, _, ?cty,_,-),
member(?cty,["Tunisia","Italy","Libya"]).

iff its ?cty value is "Tunisia", ' "Italy", or "Libya". The other form is a join constraint, which combines
instances from two relations. For example, a pair of instances of geoloc and seaport satisfy a join constraint:
C2:geoloc (?namel,?glcjcd,_,_,_) ,

seaport (?name2,?glcxd,.,_,_,_) .

iff they share common values on the attribute glc_cd (geographic location code).
Our inductive learning algorithm is extended from the greedy algorithm that learns internal disjunctions

proposed by [20]. Of the many inductive learning algorithms, Haussler's was chosen because its hypothesis
description language is the most similar to ours. His algorithm starts from an empty hypothesis of the target
concept description to be learned. The algorithm proceeds by constructing a set of candidate constraints
that are consistent with all positive examples, and then using a gain/cost ratio as the heuristic function to
select and add candidates to the hypothesis. This process of candidate construction and selection is repeated
until no negative instance satisfies the hypothesis.

We extended Haussler's algorithm to allow join constraints in the target description. To achieve this, we
extended the candidate construction step to allow join constraints to be considered, and we extended the
heuristic function to evaluate both internal disjunctions and join constraints. Also, we adopted an approach
to searching the space of candidate constraints that restricts the size of the space.

51

4.1 Constructing and Evaluating Candidate Constraints

In this subsection, we describe how to construct a candidate constraint, which can be either an internal
disjunction or a join constraint. Then we describe a method for evaluating both internal disjunctions and
join constraints. Given a relation partitioned into positive and negative instances, we can construct an
internal disjunctive constraint for each attribute by generalizing attribute values of positive instances. The
constructed constraint is consistent with positive instances because it is satisfied by all positive instances.
Similarly, we can construct a join constraint consistent with positive instances by testing whether all positive
instances satisfy the join constraint. The constructed constraints are candidates to be selected by the system
to form an alternative query.

For example, suppose we have a database that contains the instances as shown in Figure 5.2. In this
database, instances labeled with " + •» are positive instances. Suppose the system is testing whether join
constraint C2 is consistent with the positive instances. Since for all positive instances, there is a corresponding
instance in seaport with a common glc_cd value, the join constraint C2 is consistent and is considered as
a candidate constraint.

Once we have constructed a set of candidate internal disjunctive constraints and join constraints, we
need to measure which one is the most promising and add it to the hypothesis. In Haussler's algorithm, the
measuring function is a gain/cost ratio, where gain is defined as the number of negative instances excluded
and cost is defined as the syntactic length of a constraint. This heuristic is based on the generalized problem
of minimum set cover where each set is assigned a constant cost. Haussler used this heuristic to bias the
learning for short hypotheses. In our problem, we want the system to learn a query expression with the
least cost. In real databases, sometimes additional constraints can reduce query evaluation cost. So we keep
the gain part of the heuristic, while defining the cost of the function as the estimated evaluation cost of the
constraint by a database system.

The motivation of this formula is also from the generalized minimum set covering problem. The gain/cost
heuristic has been proved to generate a set cover within a small ratio bound (In \n\ + 1) of the optimal set
covering cost [15], where n is the number of input sets. However, in this problem, the cost of a set is a
constant and the total cost of the entire set covers is the sum of the cost of each set. This is not always the
case for database query execution, where the cost of each constraint is dependent on the execution ordering.
To estimate the actual cost of a constraint is very expensive. We therefore use an approximation heuristic
here.

The evaluation cost of individual constraints can be estimated using standard database query optimiza-
tion techniques [57] as follows. Let V\ denote the constraining relation, and |X>i | denote the size of a relation,
then the evaluation cost for an internal disjunctive constraint is proportional to

|Z>il

because for an internal disjunction on an attribute that is not indexed, a query evaluator has to scan the
entire database to find all satisfying instances. If the internal disjunction is on an indexed attribute, then the
cost should be proportional to the number of instances satisfying the constraint. In both cases, the system
can always sample the database query evaluator to obtain accurate execution costs.

For join constraints, let V? denote the new relations introduced by a join constraint, and I\, Zi denote
the cardinality of join attributes of two relations, that is, the number of distinct values of attributes over
which V\ and T>i join. Then the evaluation cost for the join over T>\ and T>2 is proportional to

|Pl|*P>2|

when the join is over attributes that are not indexed, because the query evaluator must compute a cross
product to locate pairs of satisfying instances. If the join is over indexed attributes, the evaluation cost is
proportional to the number of instance pairs returned from the join, that is,

max(2i,I2)'

This estimate assumes that distinct attribute values distribute uniformly in instances of joined relations.
Again, if possible, the system can sample the database for more accurate execution costs. For the above
example problem, we have two candidate constraints that are the most promising:

52

name = "Valletta" V "Marsaxlokk" V...

glc_cd = 8002 V 8003 V ...

country = "Malta"

latitude = ...

longitude = ... seaports

join on glc_cd with seaports

join on name with ?seaports

join on glc_cd with channel

I
t

name = "Grand Harbor" V "Marsa" V "St Pauls Bay"...

rail = Yes
f

storage > 2000000 /

channel ^ .

^ join on name and port_name with channel (^J^—5- •
I w

join on glc_cd with geoloc \X

Figure 5.3: Candidate Constraints to be Selected

C3: geoloc (?name,., "Malta" ,_,_).

C4:geoloc(?name,?glcxd,_,_,_),
seaport(.,Tglcxd,.,_,_,.).

Suppose Igeolocl is 300, and I seaport I is 8. Cardinality of glc_cd for geoloc is 300 again, and for
seaport is 8. Suppose both relations have indices on glccd. Then the evaluation cost of C3 is 300, and C4
is 300 * 8/300 = 8. The gain of C3 is 300 - 4 = 296, and the gain of C4 is 300 - 8 = 292, because only 4
instances satisfy C3 while 8 instances satisfy C4. (There are 8 seaports, and all have a corresponding geoloc
instance.) So the gain/cost ratio of C3 is 296/300 = 0.98, and the gain/cost ratio of C4 is 292/8 = 36.50.
The system will select C4 and add it to the hypothesis.

4.2 Searching the Space of Candidate Constraints

When a join constraint is selected; a new relation and its attributes are introduced to the search space of
candidate constraints. The system can consider adding constraints on attributes of the newly introduced
relation to the partially constructed hypothesis. In our example, a new relation seaport is introduced to
describe the positive instances in geoloc. The search space is now expanded into two layers, as illustrated in
Figure 5.3. The expanded constraints include a set of internal disjunctions on attributes of seaport, as well
as join constraints from seaport to another relation. If a new join constraint has the maximum gain/cost
ratio and is selected later, the search space will be expanded further. Figure 5.3 shows the situation when a
new relation, say channel, is selected, the search space will be expanded one layer deeper. At this moment,
candidate constraints will include all unselected internal disjunctions on attributes of geoloc, seaport, and
channel, as well as all possible joins with new relations from geoloc, seaport and channel. Exhaustively
evaluating the gain/cost of all candidate constraints is impractical when learning from a large and complex
database.

We adopt a search method that favors candidate constraints on attributes of newly introduced relations.
That is, when a join constraint is selected, the system will estimate only those candidate constraints in the
newly expanded layer, until the system constructs a hypothesis that excludes all negative instances (i.e.,
reaches the goal) or no more consistent constraints in the layer with positive gain are found. In the later
case, the system will backtrack to search the remaining constraints on previous layers. This search control
bias takes advantage of underlying domain knowledge in the schema design of databases. A join constraint is
unlikely to be selected on average, because an internal disjunction is usually much less expensive than a join.
Once a join constraint (and thus a new relation) is selected, this is strong evidence that all useful internal
disjunctions in the current layer have been selected, and it is more likely that useful candidate constraints
are on attributes of newly joined relations. This bias works well in our experiments. But certainly there are

53

cases when this search heuristic prunes out useful candidate constraints. Another way to bias the search
is by including prior knowledge for learning. In fact, it is quite natural to include prior knowledge in our
algorithm, and we will discuss this later.

Returning to the example, since C4 was selected, the system will expand the search space by constructing
consistent internal disjunctions and join constraints on seaport. Assuming that the system cannot find any
candidate on seaport with positive gain, it will backtrack to consider constraints on geoloc again. Next,
the constraint on country is selected (see Figure 5.3) and all negative instances are excluded. The system
thus learns the query:
Q3: answer(?name):-

geoloc(?name,?glcxd,"Malta" ,_,_),
seaport (_,?glc_cd,_,_,_,_).

The operafionalization component will then take Ql and this learned query Q3 as a training example for
reformulation,
geoloc (?name,., "Malta",., _)
<$ geoloc(?name,?glcjcd,"Malta",_,.) A

seaport(_,?glc.cd,_,.,.,_) .

and deduce a new rule to reformulate Ql to Q3:
geoloc(.,?glc_cd, "Malta" ,., _)
=>■ seaport (_,?glc_cd,_,_,_,_) .

This is the rule R2 we have seen in Section 2. Since the size of geoloc is considerably larger than that of
seaport, next time when a query asks about geographic locations in Malta, the system can reformulate the
query to access the seaport relation instead and speed up the query answering process.

The algorithm can be further enhanced by including prior knowledge to reduce the search space. The
idea is to use prior knowledge, such as determinations proposed by [46], to sort candidate constraints by
their comparative relevance, and then test their gain/cost ratio in this sorted order. For example, assuming
that from its prior knowledge the system knows that the constraints on attributes latitude and longitude
of geoloc are unlikely to be relevant, then the system can ignore them and evaluate candidate constraints on
the other attributes first. If the prior knowledge is correct, the system will construct a consistent hypothesis
with irrelevant constraints being pruned from the search space. However, if the system cannot find a
constraint that has a positive gain, then the prior knowledge may be wrong, and the system can backtrack
to consider "irrelevant" constraints and try to construct a hypothesis from them. In this way, the system
can tolerate incorrect and incomplete prior knowledge. This usage of prior knowledge follows the general
spirit of FOCL [40].

5 Experimental Results

Our experiments are performed on the SIMS knowledge-based information server [4, 22]. SIMS allows users
to access different kinds of remote databases and knowledge bases as if they were using a single system. For
the purpose of our experiments, SIMS is connected with three remotely distributed Oracle databases via the
Internet. Table 5.1 shows the domain of the contents and the sizes of these databases. We had 34 sample
queries written by users of the databases for the experiments. We classified these queries into 8 categories
according to the relations and constraints used in the queries. We then chose 8 queries randomly from each
category as input to the learning system and generated 32 rules. These rules were used to reformulate the
remaining 26 queries. In addition to learned rules, the system also used 163 attribute range facts (e.g., the
range of the storage attribute of seaport is between 0 and 100,000) compiled from the databases. Range
facts are useful for numerically typed attributes in the rule matching.

Table 5.1: Database Features

Databases Contents Relations Instances Size(MB)

Geo Geographical locations 16 56708 10.48
Assets Air and sea assets 14 5728 0.51
Fmlib Force module library 8 3528 1.05

54

The performance statistics for query reformulation are shown in Table 5.2. In the first column, we show
the average performance of all tested queries. We divide the queries into 3 groups. The number of queries
in each group is shown in the first row. The first group contains those unsatisfiable queries refuted by the
learned knowledge. In these cases, the reformulation takes full advantage of the learned knowledge and the
system does not need to access the databases at all, so we separate them from the other cases. The second
group contains those low-cost queries that take less than one minute to evaluate without reformulation. The
last group contains the high-cost queries.

The second row lists the average elapsed time of query execution without reformulation. The third row
shows the average elapsed time of reformulation and execution. Elapsed time is the total query processing
time, from receiving a query to displaying all answers. To reduce inaccuracy due to the random latency
time in network transmission, all elapsed time data are obtained by executing each query 10 times and
then computing the average. The reformulation yields significant cost reduction for high-cost queries. The
overall average gain is 57.10 percent, which is better than systems using hand-coded rules for semantic
optimization [22, 48, 50]. The gains are not so high for the low-cost group. This is not unexpected, because
the queries in this group are already very cheap and the cost cannot be reduced much further. The average
overheads listed in the table show the time in seconds used in reformulation. This overhead is very small
compared to the total query processing time. On average, the system fires rules 5 times for reformulation.
Note that the same rule may be fired more than once during the reformulation procedure (see (Hsu &
Knoblock 1993) for more detailed descriptions).

Table 5.2: Performance Statistics

All Answer inferred < 60s. > 60s.
of queries 26 4 17 5

No reformulation 54.27 44.58 10.11 212.21
Reformulation 23.28 5.45 8.79 86.78
Time saved 30.99 39.14 1.31 125.46
% Gain of total elapsed time 57.1% 87.8% 12.9% 59.1%

Average overhead 0.08 0.07 0.07 0.11
Times rule fired 5.00 6.00 4.18 7.00

6 Related Work

Previously, two systems that learn background knowledge for semantic query optimization were proposed
by [5l] and by [47]. Siegel's system uses predefined heuristics to drive learning by an example query. This
approach is limited because the heuristics are unlikely to be comprehensive enough to detect missing rules
for various queries and databases. Shekhar's system is a data-driven approach which assumes that a set of
relevant attributes is given. Focusing on these relevant attributes, their system explores the contents of the
database and generates a set of rules in the hope that all useful rules are learned. Siegel's system goes to
one extreme by neglecting the importance of guiding the learning according to the contents of databases,
while Shekhar's system goes to another extreme by neglecting dynamic query usage patterns. Our approach
is more flexible because it addresses both aspects by using example queries to trigger the learning and using
inductive learning over the contents of databases for semantic rules.

The problem of inductive learning from a database with multiple relations shares many issues with
research work in inductive logic programming (ILP) (Muggleton et al. 1994), especially the issue of when
to introduce new relations. The main difference between our approach and ILP is that we also consider
the cost of the learned concept description. Our system currently learns only single-clause, non-recursive
queries, while ILP approaches can learn multi-clause and recursive rules. However, due to the complexity
of the problem, most of the existing ILP approaches do not scale up well to learn from large, real-world
data/knowledge-bases containing more than ten relations with thousands of instances. Our approach can
learn from large databases because it also uses the knowledge underlying the database design.

55

Tan's cost-sensitive learning [52] is an inductive learning algorithm that also takes the cost of the learned
description into account. His algorithm tries to learn minimum-cost decision trees from examples in a
robot object-recognition domain. The algorithm selects a minimum number of attributes to construct a
decision tree for recognition. The attributes are selected in the order of their evaluation cost. When
constructing a decision tree, it uses a heuristic attribute selection function I2/C, where I is the information
gain defined as in ID3, and C is the cost to evaluate a given attribute. This function is similar to our
function gain /evaluation -cost. While there is no theoretic analysis about the general performance of the
heuristic I2/C for decision-tree learning, our function is derived from approximation heuristics for minimum
set cover problems. [38] defined another similar heuristic (21 — 1)/C for cost-sensitive decision-tree learning.
His paper provides an information-theoretic motivation of the heuristic.

In [lO] they present an attribute-oriented learning approach designed to learn from relational databases.
The approach learns conjunctive rules by generalizing instances of a single relation. The generalization
operations include replacing attribute values with the least common ancestors in a value hierarchy, removing
inconsistent attributes, and removing duplicate instances. In contrast to our inductive learning algorithm,
this attribute-oriented approach requires users to select relevant attributes before learning can be performed.

The operationalization component in our learning approach can be enhanced with an EBL-like explainer
to filter out low utility rules and generalize rules. A similar "induction-first then EBL" approach can be
found in [49]. Shen's system uses general heuristics to guide the inductive learning for regularities expressed
in a rule template P(x, y) A R(y, z) =>• Q(x, z). Our system has a definite goal, so we use example queries to
guide the learning and do not restrict the format of learned rules to a specific template.

7 Conclusions and Future Work

This chapter demonstrates that the knowledge required for semantic query optimization can be learned in-
ductively under the guidance of example queries. We have described a general approach in which inductive
learning is triggered by example queries, and an algorithm to learn from a database with multiple rela-
tions. Experimental results show that query reformulation using learned background knowledge produces
substantial cost reductions for a real-world intelligent information server.

In future work, we plan to experiment with different ways of selecting example queries for training, and
to develop an effective approach to using prior knowledge for constraining searches in the inductive learning
algorithm. We also plan to enhance the operationalization component so that the system can be more
selective and thus avoid the utility problem.

A limitation to our approach is that there is no mechanism to deal with changes to data/knowledge
bases. There are three possible alternatives to address this problem. First, the system can simply remove
the invalid rules due to the update and let the system learn from future queries after the update. Second,
the system can predict the expected utility of each rule, and choose to update or re-learn a subset of invalid
rules. Third, the system can update or re-learn all rules after the update. We plan to experiment with all
of these alternatives and propose an approach to let the system decide which update alternative is the most
appropriate for an expected model of database change.

56

Bibliography

[1] James F. Allen, Henry A. Kautz, Richard N. Pelavin, and Josh D. Tenenberg. Reasoning About Plans.
Morgan Kaufmann, San Mateo, 1991.

[2] Hussein Almuallim and Tom G. Dietterich. Learning with many irrelevant features. In Proceedings of
the Ninth National Conference on Artificial Intelligence(AAAI-91), pages 547-552, Anaheim, CA, 1991.

[3] Yigal Arens. Services and information management for decision support. In AISIG-90: Proceedings of
the Annual AI Systems in Government Conference, George Washington University, Washington, DC,
1990.

[4] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and integrating data
from multiple information sources. International Journal on Intelligent and Cooperative Information
Systems, 2(2):127-158, 1993.

[5] Yigal Arens and Craig A. Knoblock. Planning and reformulating queries for semantically-modeled mul-
tidabase systems. In Proceedings of the First International Conference on Information and Knowledge
Management, pages 92-101, Baltimore, MD, 1992.

[6] Christer Backstrom. Finding least constrained plans and optimal parallel executions is harder than we
thought. In Current Trends in AI Planning: EWSP'93-2nd European Workshop on Planning, Frontiers
in AI and Applications. IOS Press, Amsterdam, 1993.

[7] Anthony Barrett, Keith Golden, Scott Penberthy, and Daniel Weld. UCPOP user's manual (version
2.0). Technical Report 93-09-06, Department of Computer Science and Engineering, University of
Washington, 1993.

[8] J.M. Blanco, A. Illarramendi, and A. Go ni. Using a terminological system to integrate relational
databases. Facultad de Informatica, Universidad del Pais Vasco, Apdo 649, San Sebastian, Spain, 1992.

[9] R.J. Brachman and J.G. Schmölze. An overview of the KL-ONE knowledge representation system.
Cognitive Science, 9(2): 171-216, 1985.

[10] Yandong Cai, Nick Cercone, and Jiawei Han. Learning in relational databases: An attribute-oriented
approach. Computational Intelligence, 7(3):119—132, 1991.

[11] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton. PRODIGY: An integrated architecture for
planning and learning. In Kurt VanLehn, editor, Architectures for Intelligence, pages 241-278. Lawrence
Erlbaum, Hillsdale, NJ, 1991.

[12] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to semantic query opti-
mization. ACM Transactions on Database Systems, 15(2):162-207, 1990.

[13] Arvola Chan, Sy Danberg, Stephen Fox, Wen-Te K. Lin, Anil Nori, and Daniel Ries. Storage and access
sturctures to support a semantic data model. In Proceedings of the 8th International Conference on
Very Large Data Bases, pages 122-130, Very Large Database Endowment, Saratoga, CA, 1982.

[14] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333-377, 1987.

57

[15] Vasek. Chvatal. A greedy heuristic for the set covering problem. Mathematics of Operations Research,

4, 1979.

[16] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration using a large knowledge
base in Carnot. IEEE Computer, pages 55-62, December 1991.

[17] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction To Algorithms. The MIT
Press/McGraw-Hill Book Co., Cambridge, MA, 1989.

[18] Ken Currie and Austin Täte. O-plan: The open planning architecture. Artificial Intelligence, 52(1):49-

86, 1991.

[19] Charles L. Forgy. RETE: A fast algorithm for the many pattern/many object pattern matching problem.
Artificial Intelligence, pages 17-37, 1982.

[20] David Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework.
Artificial Intelligence, 36:177-221, 1988.

[21] Alexander Horz. On the relation of classical and temporal planning. In Proceedings of the Spring
Symposium on Foundations of Automatic Planning: The Classical Approach and Beyond, 1993.

[22] Chun-Nan Hsu and Craig A. Knoblock. Reformulating query plans for multidatabase systems. In Pro-
ceedings of the Second International Conference on Information and Knowledge Management, Wash-

ington, D.C., 1993. ACM.

[23] R. Hull and R. King. Semantic database modeling: Survey, applications, and research issues. ACM
Computing Surveys, 19(3):201-260, 1987.

[24] A. Illarramendi, J.M. Blanco, and A. Go ni. One step to integrate data and knowledge bases. Facultad
de Informatica, Universidad del Pai's Vasco, Apdo 649, San Sebastian, Spain, 1992.

[25] Matthias Jarke and Jürgen Koch. Query optimization in database systems. ACM Computing Surveys,

16(2):111-152, 1984.

[26] Subbarao Kambhampati. Multi-contributor causal structures for planning: A formalization and evalu-
ation. Artificial Intelligence, Fall, 1994.

[27] Jonathan Jay King. Query Optimization by Semantic Reasoning. PhD thesis, Stanford University,
Department of Computer Science, 1981.

[28] Craig A. Knoblock, Yigal Arens, and Chun-Nan Hsu. Cooperating agents for information retrieval.
In Proceedings of the Second International Conference on Cooperative Information Systems, Toronto.

Canada, 1994.

[29] D. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Addison-Wesley, Reading, MA, 1990.

[30] Robert MacGregor. A deductive pattern matcher. In Proceedings of the Seventh National Conference
on Artificial Intelligence, Saint Paul, Minnesota, 1988.

[31] Robert MacGregor. The evolving technology of classification-based knowledge representation systems.
In John Sowa, editor, Principles of Semantic Networks: Explorations in the Representation of Knowl-

edge. Morgan Kaufmann, 1990.

[32] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence. Anaheim, CA, 1991.

[33] Donald P. McKay, Timothy W. Finin, and Anthony O'Hare. The intelligent database interface: In-
tegrating AI and database systems. In Proceedings of the Eighth National Conference on Artificial

Intelligence, Boston, MA, 1990.

58

[34] Ryszard S. Michalski. A theory and methodology of inductive learning. In Machine Learning: An
Artificial Intelligence Approach, volume I, pages 83-134. Morgan Kaufmann Publishers, Inc.. Los Altos,
CA, 1983.

[35] Steven Minton. Learning Effective Search Control Knowledge: An Explanation-Based Approach. PhD
thesis, Computer Science Department, Carnegie Mellon University, 1988.

[36] Steven Minton, John Bresina, and Mark Drummond. Commitment strategies in planning: A compar-
ative analysis. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
Sydney, Australia, 1991.

[37] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka, Oren Etzioni, and Yolanda
Gil. Explanation-based learning: A problem solving perspective. Artificial Intelligence, 40(l-3):63-118
1989.

[38] Marlon Nunez. The use of background knowledge in decision tree induction. Machine Learning, 6:231-
250, 1991.

[39] Mike P. Papazoglou, Steven C. Laufmann, and Timos K. Sellis. An organizational framework for cooper-
ating intelligent information systems. International Journal of Intelligent and Cooperative Information
Systems, l(l):169-202, 1992.

[40] Micheal J. Pazzani and Dennis Kibler. The utility of knowledge in inductive learning. Machine Learning
9:57-94, 1992.

[41] J. Scott Penberthy. Planning with Continuous Change. PhD thesis, Department of Computer Science
and Engineering, University Washington, 1993.

[42] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order planner for ADL.
In Third International Conference on Principles of Knowledge Representation and Reasoning, pages
189-197, Cambridge, MA, 1992.

[43] Gregory Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-
Shapiro, editor, Knowledge Discovery in Databases, pages 229-248. MIT Press, 1991.

[44] M.P. Reddy, B.E. Prasad, and P.G. Reddy. Query processing in heterogeneous distributed database
management systems. In Amar Gupta, editor, Integration of Information Systems: Bridging Heteroge-
neous Databases, pages 264-277. IEEE Press, NY, 1989.

[45] Pierre Regnier and Bernard Fade. Complete determination of parallel actions and temporal optimization
in linear plans of action. In J. Hertzberg, editor, European Workshop on Planning, pages 100-111.
Springer-Verlag, 1991.

[46] Stuart J. Russell. The Use of Knowledge in Analogy and Induction. Morgan Kaufmann, San Mateo,
CA, 1989.

[47] Shashi Shekhar, Babak Hamidzadeh, Ashim Kohli, and Mark Coyle. Learning transformation rules
for semantic query optimization: A data-driven approach. IEEE Transactions on Knowledge and Data
Engineering, 5(6):950-964, 1993.

[48] Shashi Shekhar, Jaideep Srivastava, and Soumitra Dutta. A formal model of trade-off between optimiza-
tion and execution costs in semantic query optimization. In Proceedings of the l^th VLDB Conference,
Los Angeles, CA, 1988.

[49] Wei-Min Shen. Discovering regularities from knowledge bases. International Journal of Intelligent
Systems, 7:623-635, 1992.

[50] Sreekumar T. Shenoy and Zehra Meral Ozsoyoglu. Design and implementation of a semantic query
optimizer. IEEE Transactions on Knowledge and Data Engineering, 1(3):344-361, 1989.

59

[51] Michael D. Siegel. Automatic rule derivation for semantic query optimization. In Larry Kerschberg,
editor, Proceedings of the Second International Conference on Expert Database Systems, pages 371-385.
George Mason Foundation, Fairfax, VA, 1988.

[52] Ming Tan. Cost-sensitive learning of classification knowledge and its application in robotics. Machine
Learning, 13:7-33, 1993.

[53] Austin Täte. Project planning using a hierarchic non-linear planner. Research Report 25, Department
of Artificial Intelligence, University of Edinburgh, Edinburgh, Scotland, 1976.

[54] Garold S. Tjaden and Michael J. Flynn. Detection and parallel execution of independent instructions.
IEEE Transactions on Computers, C-19(10):889-895, 1970.

[55] Shalom Tsur and Carlo Zaniolo. An implementation of gem - supporting a semantic data model on a
relational back-end. In Proceedings of the ACM SIGMOD International Conference on the Management
of Data, pages 286-295, ACM, New York, 1984.

[56] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, volume I. Computer Science
Press, Palo Alto, CA, 1988.

[57] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, volume II. Computer Science
Press, Palo Alto, CA, 1988.

[58] Manuela M. Veloso. Nonlinear problem solving using intelligent casual-commitment. Technical Report
CMU-CS-89-210, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1989.

[59] Manuela M. Veloso, M. Alicia Perez, and Jaime G. Carbonell. Nonlinear planning with parallel resource
allocation. In Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling and
Control, pages 207-212, San Diego, CA, 1990.

[60] Steven A. Vere. Planning in time: Windows and durations for activities and goals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 5(3):246-267, May 1983.

[61] Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation algorithms for temporal reason-
ing: A revised report. In Daniel Weld and Johann de Kleer, editors, Readings in Qualitative Reasoning
about Physical Systems, pages 373-381, San Mateo, CA, 1989. Morgan Kaufmann.

[62] Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 15(4), 1994.

[63] David E. Wilkins. Domain-independent planning: Representation and plan generation. Artificial Intel-
ligence, 22(3):269-301, 1984.

60

The SIMS Manual
Version 1.0*

Jose-Luis Ambite
Yigal Arens

Naveen Ashish
Chin Y. Chee

Chun-Nan Hsu
Craig A. Knoblock

Wei-Min Shen
Sheila Tejada

Information Sciences Institute
University of Southern California

4676 Admiralty Way,
Marina del Rey, CA 90292" U.S.A.

July 13, 1995

Abstract

SIMS provides intelligent access to heterogeneous, distributed information sources, while insulating
human users and application programs from the need to be aware of the location of the sources, their
query languages, organization, size, etc.

This manual explains how to bring up a SIMS information server in a new application domain.
After providing a short overview of relevant features of the SIMS system, it describes the modeling and
programming work that has to be performed to support the extension of SIMS to a given collection of
information sources in the domain. To aid a user inexperienced with the technological infrastructure
underlying SIMS, the manual contains examples structured as a tutorial that can be followed to actually

produce a working SIMS system.
For general discussion, information and announcements concerning SIMS, please send mail to sims-

forum-request@isi.edu and ask to be added to the SIMS-Forum mailing list. For bug reports, please
send mail to sims-bug-report@isi.edu.

'The research reported here was supported in part by Rome Laboratory of the Air Force Systems Command and the
Advanced Research Projects Agency under Contract Number F30602-94-C-0210, in part by a Technology Reinvestment Program
award funded by the Advanced Research Projects Agency under Contract Number MDA972-94-2-0010 and by the State of
California under Contract Number C94-0031, in part by the National Science Foundation under Grant Number IRI-9313993.
and in part by an Augmentation Award for Science and Engineering Research Training funded by the Advanced Research
Projects Agency under Contract Number F49620-93-1-0594. The views and conclusions contained in this paper are those
of the author and should not be interpreted as representing the official opinion or policy of RL, ARPA, CA. NSF, the U.S.
Government, or any person or agency connected with them.

61

Contents
1 Introduction

.1.1 Architecture and Background
1.2 Information Sources Supported
1.3 Technological Infrastructure 65

1.3.1 Loom 66
1.3.2 LIM . . 66
1.3.3 KQML 67

2 The SIMS Language 68

2.1 Sims-Retrieve Query Command 68
2.1.1 Clauses 70
2.1.2 Query Expression Constructors 71

2.2 SIMS Transaction Commands 72
2.2.1 Sims-Insert. Sims-Update, and Sims-Delete 72
2.2.2 Examples 73

2.3 SIMS Active Notifications 73

2.3.1 Sims-Begin-Notify and Sims-End-Notify 73

2.3.2 Examples 74

3 The Domain Model

4 Information Source Models '°
4.1 Modeling the Contents of an Information Source 78
4.2 Accessing an Information Source 80

5 Information-Source Wrappers and Communication 81
5.1 Information Source Wrappers 81

5.1.1 Returning Loom Instances 82
5.2 Remote Communication Using KQML 82

6 Running SIMS 85
6.1 Top-Level Commands 85

6.1.1 Query Commands 85
6.1.2 Transaction Commands 85
6.1.3 Active Notifications 85
6.1.4 Query Set Management 85
6.1.5 Information Source Management 86
6.1.6 Tracing 87

6.2 The Graphical Interface 87
6.2.1 Graphical Interface Commands 87

6.3 Plan Cost Evaluation 89

7 Trouble Shooting 90
7.1 Testing the Information-Source Wrappers 90
7.2 Testing the Source-level Queries 90
7.3 Testing the Domain-level Queries 91

93 8 Installation and System Requirements
8.1 Component Structure 93
8.2 Define, Load and Compile Components • • • 93

9 Coded Example ^5

62

10 Additional Reading 106
10.1 SIMS 106
10.2 Loom 107
10.3 LIM/IDI 107
10.4 KQML 107

References

63

1 Introduction

The overall goal of the SIMS project is to provide intelligent access to heterogeneous, distributed information
sources (databases, knowledge bases, flat files, programs, etc.), while insulating human users and application
programs from the need to be aware of the location of the sources, their query languages, organization, size,
etc.

The standard approach to this problem has been to construct a global schema that relates all the
information in the different sources and to have the user pose queries against this global schema or various
views of it. The problem with this approach is that integrating the Schemas is typically very difficult,
and any changes to existing data sources or the addition of new ones requires a substantial, if not complete,
repetition of the schema integration process. In addition, this standard approach is not suitable for including
information sources that are not databases.

SIMS provides an alternative approach. A model of the application domain is created, using a knowledge
representation system to establish a fixed vocabulary describing objects in the domain, their attributes and
relationships among them. For each information source a model is constructed that indicates the data-model
used, query language, network location, size estimates, etc., and describes the contents of its fields in relation
to the domain model. SIMS' models of different information sources are independent, greatly easing the
process of extending the system.

Queries to SIMS are written in the high-level uniform language of the domain model, a language inde-
pendent of the specifics of the information sources. Queries need not contain information describing which
sources are relevant to finding their answers or where they are located. Queries do not need to state how
information obtained from different sources should be joined or otherwise combined or manipulated.

SIMS uses a planning system to determine how to retrieve and integrate the data necessary to answer
a query. The planner first selects information sources to be used in answering a query. It then orders
sub-queries to the appropriate information sources, selects the location for processing intermediate data.
determines which sub-queries can be executed in parallel, and then initiates execution.

Changes to information sources are handled by changing models only. The changes will be considered
by the planner in producing future plans that utilize information from the modified sources. This greatly
facilitates extensibility.

The rest of this section presents an overview of SIMS and its architecture. In Section 2 we show the
format of the queries that a user would input to SIMS and the output that should be expected. Then, we
consider in more detail the specification of domain models, in Section 3, and information sources models,
in Section 4. Section 5 gives a brief introduction on how to construct a wrapper for a new information
source and how to communicate with the wrapper. Section 6 explains how to run SIMS both through its
graphical user interface and its functional interface. Section 7 describes how to test and debug a new SIMS
application. Section 8 presents the installation and system requirements. Finally, in Section 9 we show the
code that would implement the example that is discussed throughout the manual. Section 10 contains a
reading list of relevant papers.

1.1 Architecture and Background

A visual representation of the components of SIMS is provided in Figure 1.
SIMS addresses the problems that arise when one tries to provide a user familiar only with the general

domain with access to a system composed of numerous separate data- and knowledge-bases.
Specifically, SIMS does the following:

• Modeling: It provides a uniform way to describe information sources to the system, so that data in
them is accessible.

• Information Source Selection: Given a query, it

- Determines which information sources contain the data relevant to answering the query.

- For those concepts mentioned in the query which appear to have no matching information source,
it determines if any knowledge encoded in the domain model (such as relationship to other con-

64

User
Query

1
Query-Plan
Formation

I
Information

Source
Selection

Query-Plan
Optimization Execution Output

Information Sources

Figure 1: SIMS Overview Diagram.

cepts) permits reformulation of the query in a way that will enable suitable information sources
to be identified.

• Access Planning: It creates a plan, a sequence of subqueries and other forms of data-manipulation
that when executed will yield the desired information.

• Query-Plan Optimization: It uses knowledge about databases — their sizes, semantic rules con-
cerning their contents, indexes — to optimize the plan.

• Discovering Database Semantic Rules: By querying databases and other information sources
and analyzing the returned information, it discovers semantic rules characterizing their contents. This
learned knowledge is used to modify SIMS' domain and information source models and ultimately to
improve query plans. This module has not been released yet.

• Execution: It executes the reformulated query plan; establishing network connections with the appro-
priate information sources, transmitting queries to them and obtaining the results for further process-
ing. During the execution process SIMS may detect that certain information sources are not available,
or respond erroneously. In such cases, the relevant portion of the query plan will be replanned.

Each information source is accessed through a wrapper, a module that can translate queries to that
information source from the SIMS query language to the query language understood by that source. The
wrapper then takes the data returned by the information source and sends it on to SIMS in the form SIMS
expects.

1.2 Information Sources Supported
In order for SIMS to support an information source there must be an information source model for it, and
there must exist a wrapper for that type of source. While each information source needs to be modeled
individually, only one wrapper is required for any type of information source. For example, LIM (see below)
serves as the wrapper for any Oracle database.

Wrappers for Loom knowledge bases, Oracle relational databases, and MUMPS-based network databases
have already been written for SIMS. To add a new database of any of these types requires, therefore, only
to create an information source model for it. In order to add an information source of a new type one would

65

(sins-retrieve (?last-name)
(:and (patient ?patient)

(doctor-name Tpatient "GOHZALEZ")
(last-name ?patient ?last-name)))

Figure 2: Example SIMS/Loom Query

have to obtain, or write, a new wrapper for it. In the case of another database using SQL as its query
language, this would be only a simple modification of LIM.

1.3 Technological Infrastructure

This subsection is provided for readers who may not be familiar with the systems underlying SIMS. A general
understanding of Loom, LIM and KQML is assumed in the rest of this manual. A list of relevant papers is
provided in Section 10.

1.3.1 Loom

Loom serves as the knowledge representation system SIMS uses to describe the domain model and the
contents of the information sources. In addition, Loom is used to define a knowledge base that itself serves
as an information source. Loom provides both a language and an environment for constructing intelligent
applications. It combines features of both frame-based and semantic network languages, and provides some
reasoning facilities. As a knowledge representation language it is a descendant of the KL-ONE [1] system.

The heart of Loom is a powerful knowledge representation system, which is used to provide deductive
support for the declarative portion of the Loom language. Declarative knowledge in Loom consists of
definitions, rules, facts, and default rules. A deductive engine called a classifier utilizes forward-chaining,
semantic unification and object-oriented truth maintenance technologies in order to compile the declarative
knowledge into a network designed to efficiently support on-line deductive query processing. For a more
detailed description of Loom, see [3, 4].

To illustrate both Loom and the form of SIMS' queries, consider Figure 2, which contains a simple
semantic query to SIMS. This query requests the last names of the patients of a doctor by the name of
Gonzalez. The three subclauses of the query specify, respectively, that the variable ?patient describes a
member of the model concept patient, that the relation doctor-name holds between the values of ?patient
and the string GONZALEZ, and that the relation last-name holds between the values of ?patient and the
respective values of the variable ?last-name.

As we will see later in Figure 4, patient is a subconcept of person therefore, by inheritance, it too has
person's attributes, among them last-name.

The query specifies that the value of the variable ?last-name be returned. A query to SIMS need not
necessarily correspond to a single database query, since there may not exist one database that contains all
the information requested.

1.3.2 LIM

The Loom Interface Module (LIM) [5] has been developed by researchers at Unisys to mediate between
Loom and databases. It currently acts as a SIMS wrapper to relational Oracle databases, using the SQL
language. LIM reads an external database's schema and uses it to build a Loom representation of the
database. The Loom user can then treat concepts whose instances are stored in a database as though they
contained "real" Loom instances. Given a Loom query for information about instances of that concept, LIM
automatically generates an SQL query to the database that contains the information, and returns the results
as though they were Loom instances. LIM focuses primarily on the issues involved in mapping a SIMS query
to a single database. After SIMS has planned a query and formed subqueries, each grounded in a single
database, it hands the subqueries to LIM for the actual data retrieval. SIMS handles direct queries to the
Loom knowledge base on its own.

66

1.3.3 KQML

To simplify and modularize its interaction with databases, SIMS is designed as an intelligent agent that
communicates with other information agents, which can be simple information sources or other SIMS agents.
The former are regular databases which are, however, enclosed in software wrappers — systems that accept
queries to the database in the Loom language and translate them into queries that the local DBMS can
handle.

The Knowledge Query Manipulation Language (KQML) [2] is an agent communcation language that
supports such messages. We have adopted KQML for our agent-to-agent communication. KQML has been
designed to support knowledge-based communication. Using it, agents can transmit structured objects along
with the contents of the objects, so they can transmit model fragments together with queries using terms
from those models. The KQML language handles the interface protocols for transmitting queries, returning
the appropriate information, and building the necessary structures.

67

2 The SIMS Language

The SIMS language supports three different types of commands for retrieving, modifying, and monitor-
ing information. The command sims-retrieve is used for querying, while the commands sims-insert,
sims-delete, and sims-update are transaction commands. The commands sims-begin-notify and
siras-end-notif y handle the monitoring of data items. In the following sections each type of command
will be discussed in further detail.

2.1 Sims-Retrieve Query Command

SIMS takes a sims-retrieve query as input and outputs the data satisfying the constraints specified in
the query. Currently, SIMS supports most features of the Loom query language. These features should be
enough for most database applications. From now on, we call this subset of the Loom query language as
the SIMS query language. The output format of SIMS is a (LISP) list which can contain constants, Loom
objects or tuples.

<query> ::= (sims-retrieve ({<variable>} +) <query-expr>)
<query-expr> ::—

({:and | :or} {<query-expr>}+) |
(:not <query-expr>) |
(:collect ({<variable>} +) <query-expr» |
(:implies <query-expr> <query-expr>) |
({:for-some | :for-all} ({<variable>}+) <query-expr» | <clause>

<clause> ::=

<concept-exp> j <relation-exp> | <assignment-exp> | <comparison-exp> |
<aggregation-exp>

<concept-exp> ::= (<concept-name> <variable>)
<relation-exp> ::=

(<relation-name> {<bound-variable> | <function-exp>} {<term> | <function-exp>})
<assignment-exp> ::= (= <unbound-variable> {<arith-exp> | <set-exp>})
<comparison-exp> ::= <member-comparison> | <arithematic-comparison>
<function-exp> ::= «relation-name> {<bound-variable> |<constant> |<symbol> |<runction-exp>}) |

(<aggregation-function> <set-exp>)
<set-exp> ::= ({<constant>}+) |(:collect ({<variable>} +)<query-expr» |<function-exp> |

<bound-variable>
<aggregation-exp> ::=

(<aggregation-function> <set-exp> {<clause> |<variable>})
<member-comparison> ::=

(member <bound-variable> <set-exp») | (members <set-exp> <bound-variable>)
<arithematic-comparison> ::=

«comparison-op> {<arith-exp> | <function-exp>} {<arith-exp> | <function-exp>})
<arith-exp> ::= <number> | <bound-variable> |

(<arith-op> {<arith-exp> | <function-exp>} {<arith-exp> | <function-exp>})
<arith-op> ::= + | - | * | /
<comparison-op> ::= = | > | < | >= | <= | ; =
<aggregation-function> ::= count | avg | sum | min | max
< concept -name > ::= <symbol>
<relation-name> ::= <symbol>
<term> ::= <constant> | <variable>
<variable> ::= <bound-variable> I <unbound-variable>
<bound-variable>1 ::= ?<symbol>
<unbound-variable> ::= ?<symbol>
<constant> ::= <number> | <string>

Figure 3: BNF for the SIMS Query Language

68

(<relation-name> <term>)
(<relation-name> <symbol>)
(<relation-name> <function-exp>)
(<aggregat ion-function> <set-exp>)

Some examples of function expressions are:
(last-name ?patient)
(last-name (used-by-patient ?room))

The function last-name returns the the last name of the patient. In the second example the function
used-by-patient returns the patient that is in ?room and the function last-name returns the the
last name ofthat patient.

The following examples are relation expressions which contain these function expressions:
(doctor-name ?patient (last-name ?patient))
(last-name (used-by-patient ?room) "Lee")

The first expression is satisfied only when the patient and the doctor have the same last name. The
second expression is satisfied when the last name of the patient in the ?room is "Lee".

Assignment expressions:
(= <unbound-variable> <arith-expr>)
(= <unbound-variable> <set-exp>)

The first clause assigns to the unbound variable the computed result of <arith-expr>. In the second
clause the variable is assigned to a <set-exp> which is defined as a set of constants or any expression
which returns a set of constants.

For the following example, suppose we have a concept patient and relations on patients and their
names (last-name and first-name). The role medi-care-f ee states the relation between patients and
their medical care charge. The role insurance-deduct defines the insurance deduction of a patient.
The following query will return a list of patients' names and total balances:

(sims-retrieve (?lname ?fname ?total)
(:and (patient ?patient)

(last-name ?patient ?lname)
(first-name ?patient ?fname)
(medi-care-fee ?patient ?mfee)
(insurance-deduct ?patient ?insd)
(= ?total (- ?mfee ?insd))))

==> (("Okumura" "Ben" 15000)
("DeSpain" "Ann" 20000)
("Kumar" "Barbara" 18500)
("Hamilton" "Sheila" 27500)
("Lee" "Kayano" 26500)

Comparison expressions are used to express a constraint on variables. The following are forms of
member comparisons:

(member <bound-variable> <set-exp>)
(members <set-exp> <bound-variable>)

where a <set-exp> is defined as a set of constants or any expression which returns a set of constants.
The first clause is satisfied if the variable is bound to one of the constants (i.e., strings or numbers) in
the <set-exp>. In the second clause the order of the arguments are reversed.

The following are examples of member comparisons:
(member ?lname ("Smith" "Hamilton" "DeSpain" "Datta"))
(members (doctor-name ?patient) ?doctor)

69

The BNF syntax for the SIMS query language is shown in Figure 3. We next provide a more in-depth
description of the language. The following is the basic form of a SIMS query:

(Sims-retrieve (?i>i ... ?«„) <query-expr>)

The variables listed after the sims-retrieve command, lv\ ...?u„, are considered output variables.
This means that the values of these variables are returned as the output of the query. All variables must be
named with the prefix '?'. The query expression is composed of clauses and constructors. Clauses determine
the values of the variables by binding the variables to specific types of values. In other words, clauses
constrain the values of the variables. There are five types of clauses supported by the SIMS language which
will be described in the next section. Clauses can be grouped by constructors into queries. Currently, the
set of constructors provided is : and, :or, :not, :for-all, :for-some, and : collect.

A SIMS query returns as output a list of instantiations of the output variables which satisfy the bindings
of the clauses in the query body. The following shows an example of output from a SIMS query,

(sims-retrieve (?patient ?lname) (:and (Patient ?patient)
(last-name Tpatient ?lname)))

==> ((IilPATIENTS145443 "Richardson")
(IiI PATIENTS145437 "Brown")
(I ilPATIENTS145441 "Kumar") ...)

In this query the output variable ?patient is bound to the concept Patient and the variable ?lzame is
bound to the values of the role last-name, respectively. SIMS returns a set of tuples which contains Loom
objects and strings corresponding to the instances of Patient and last-name. Loom objects are displayed
with the prefix |i|, which is a Loom internal identification symbol.

2.1.1 Clauses

Clauses are expression that constrain the values which can be bound to a variable. A clause is satisfied when
there exists values which satisfy the constraints on the variables in that clause. The following are the five
types of clauses:

• Concept expressions:
(<concept-name> <variable>)

where <concept-name> is the name of a concept, the variable is bound to an instance of the concept
<concept-name>. An example of a concept expression is:

(Patient ?patient)

This constrains the variable ?patient to only the instances of the concept Patient.

• User-defined relation expressions:
(<relation-name> <bound-variable> <term>)
(<relation-name> <bound-variable> <function-exp>)
(<relation-name> <function-exp> <term>)
(<relation-name> <function-exp> <function-exp>)

where <relation-name> is the name of a relation, <bound-variable> is a variable while <term> can
be either a variable or a constant (a number or a string). The first clause states that there is a binary
relation <relation-name> between <bound-variable> and <term>. The following are examples of this
type of relation expression:

(last-name ?patient ?lname)
(first-name ?patient "Ann")

The first expression is only satisfied if the value for ?lname is the last name of ?patient. The second
expression is only satisfied if "Ann" is the first name of ?patient.

The other types of relation clauses contain function expressions, <function-exp>. A function expression
is basically the same as a relation expression, except that the second argument of the relation is returned
as the result. The expression <function-exp> returns a constant, in this case. A <function-exp> is
defined as either of the following:

1A variable is considered to be bound if it appears earlier in the query

70

The first expression is only satisfied if the value for ?lname matches one of the four strings in the set.
The second expression is only satisfied if the value for ?doctor matches one of the strings in the set
returned by the function doctor-name. The function doctor-name returns the names of the doctors
for ?patient.

Another type of comparison expression uses the arithmetic comparison operators: =, >, <, >=, <=,
!=. In this case, the expression <function-exp> returns a constant.

(<comparison-op> <arith-expr> <arith-expr>)
(<comparison-op> <arith-expr> <function-exp>)
(<comparison-op> <function-exp> <arith-expr>)
(<comparison-op> <function-exp> <iunction-exp>)

The following are examples of the arithmetic comparison:
(!= (last-name ?patient) "Kumar")
(= (insurance-deduct ?patient) 300)
(> (medi-care-fee ?patient) (insurance-deduct ?patient))

The first example checks that the last name of the patient is not "Kumar". The = operator in the
second expression tests whether the insurance deduction of the patient is equal to 300. The last
example compares the medi-care fee of the patient to the insurance deduction.

• Aggregate expression:
(<aggregate-function> <set-exp> <term>)

A set of values is required as the first argument for an aggregate function. The value of the operation
performed on the set of values is then bounded to <term>, as shown in the following example:

(count (doctor-name ?patient) ?count)

This counts the set of values returned by the function doctor-name and binds the result to the variable
?count.

2.1.2 Query Expression Constructors

This section provides detailed descriptions for each of the expression constructors supported by SIMS. The
examples refer to the models defined in later sections.

(:and expri . . .exprn) — CONJUNCTION

This returns the values for which each of the expressions exprj is satisfied.
Example: (:and (Office ?x) (hospital-room ?x))

This expression is satisfied if ?x is both an Office and a hospital-room.

(:or expri .. .exprn) — DISJUNCTION

This returns the values for which at least one of the expressions exprj is satisfied.
Example: (:or (Doctor ?x) (Patient ?x))

This expression is satisfied if ?x is either a Doctor or a Patient.

(:for-some (?t>i ...?v„) expr) — EXISTENTIAL QUANTIFICATION

This returns the values for which there exist values for the variables ?t'i through ?u„ that satisfy
the expression expr.

Example: (:for-some (?dl ?d2)
(:and (patient-of ?patient ?dl) (patient-of ?patient ?d2)

(!= (doctor-id ?dl)
(doctor-id ?d2))))

This expression is satisfied if there exist a patient which has more than
one doctor.

(:for-all (?«i . . .?u„) (:implies expri expr7)) — UNIVERSAL QUANTIFICATION

71

This returns the values of all sets of bindings of the variables ?t>i through ?r„ that satisfy the
expression expr\ and the expression expr<i-

Example: (:for-all (?doctor)
(:implies (patient-of ?patient ?doctor)

(:not (doctor-Id ?doctor 135))))
This expressions is satisfied if all of the doctors of ?patient do
not have the identification number 135.

All of the universally quantified variables IVJ must appear within expri. This is necessary in
order to bind the variables to specific types of values. The bindings for the expression expr2 can
then be generated, because the types of the variables have already been determined.

(:not expr) — NEGATION

This returns the values for which expression expr can not be proved satisfiable.
Example: (:and (Patient ?p) (:not (elderly-patient ?p)))

This expression is satisfied if ?p is a Patient and ?p is not
known to be an elderly-patient.

In the negated expression expr variables must be bound when expr is evaluated. The following
query is not legal because the variable ?p is not bound yet.
(retrieve ?p (:not (Patient ?p)))

(:collect ?i> expr) — COLLECT SATISFYING VALUES (COMPUTED SET)

This returns the list of values bound to the variable 1v such that expr is satisfied.
Example: (: collect ?id

(:ior-sorae ?patient
(:and (Patient ?patient)

(patient-id ?patient ?id))))
Returns the list of identification numbers of all the patients.

2.2 SIMS Transaction Commands

SIMS supports transactions of insert, delete, and update under the following assumptions:

• Every transaction must have roles that can be used to uniquely identify one and only one instance of
a domain concept.

• Can only add/update/delete one instance per transaction.

• The current release assumes all sub-transactions generated by SIMS can be executed successfully. In
the next release, we shall have the complete two-phase commit in place.

2.2.1 Sims-Insert, Sims-Update, and Sims-Delete

• sims-insert: for creating a new instance of a concept with given roles/values. This function returns
T for success, NIL for a failure.

• sims-delete: for deleting an existing instance of a concept. This function returns T for success. NIL
for a failure.

• sims-update: for changing values of roles for an existing instance of a concept. This function returns
T for success, NIL for a failure.

72

2.2.2 Examples

Assume that we have a domain concept called patient, and it has three roles: patient-id (key), sex,
and religion. Furthermore, assume that there are two information sources: DB1 and DB2. DB1 contains
patient's id and sex, and DB2 contains patient's id and religion. Then the following is a trace of transactions
illustrate how to use sims-insert, sims-delete, and sims-update.

Verify there is no patient with ID 111
(sims-retrieve (?p)

(-.and (patient ?p)
(patient-id ?p 111))) =>• NIL

Create a new patient with ID 111. Note that this will trigger creations of new instances in both DB1

and DB2.
(sims-insert ()

(:and (patient ?p)
(sex ?p "H")
(religion ?p "WHO KNOWS")
(patient-id ?p 111))) =*• T

Query this new patient
(sims-retrieve (?p ?s)

(:and (patient ?p)
(patient-id ?p 111)
(sex ?p ?s)
(religion ?p ?r))) => (("H" "WHO KNOWS"))

Change values of this patient
(sims-update 0

(:and (patient ?p)
(patient-id ?p 111)
(sex ?p ?sex)
(= ?sex "F")
(religion ?p ?religion)
(- ?religion "EVERY ONE KNOWS"))) => T

Query for the new values
(sims-retrieve (?p ?s)

(:and (patient ?p)
(patient-id ?p 111)
(sex ?p ?s)
(religion ?p ?r))) => (("F" "EVERY ONE KNOWS"))

Delete a patient with ID 111
(sims-delete ()

(:and (patient ?p)
(patient-id ?p 111))) => T

2.3 SIMS Active Notifications

Clients can ask SIMS to monitor certain data items with specified conditions and actions. SIMS will execute
these actions and send a notification via TCP/IP to the client whenever the data items experience changes

that satisfy the specified conditions.

2.3.1 Sims-Begin-Notify and Sims-End-Notify

sims-begin-notify

(sims-begin-notify
:concept 'CNAME ;; The name of the concept to be monitored
:when Ql ;; A SIMS query used as the trigger condition
:do #'FUN ;; Any lisp function that takes two arguments;

73

:host

:port
Address

2020)

the first argument is bound to the concept name,

and the second the transaction itself,

a string for the LISTENER'S machine address

a port number of the LISTENER

=> NOTIFICATION-ID ;; the function returns a notification id.

sims-end-notify

(sims-end-notify NOTIFICATION-ID) this function informs SIMS to stop

monitor activities specified in the

notification with the NOTIFICATION-ID.

2.3.2 Examples

Assume that there is a machine xxx.isi.edu that has a port 2020 open for incoming messages. Here is how
you ask SIMS to start a notification on the concept "finding" where you are interested in knowing any
transactions that involve a patient who has an injury at "left front chest":
(sims-begin-notify

:concept 'finding
:when '(sims-retrieve (?f ?id:

(:and (finding ?f)
(finding-location ?f ?1)
(= ?1 "left front chest")))

:do #'show-transaction
:host "xxx.isi.edu"
:port 2020) ==> N0TIFICATI0N-12

where show-transaction is a function that prints out its second argument. Suppose now, someone else
has successfully created a new instance of'"finding'" as follows:
(sims-insert ()

(:and (finding ?f)
(finding-id ?f 3)
(patient-name ?f "Janes Wilkie")
(finding-location ?f "left front chest")))

Then SIMS will send the following message to the port 2020 on xxx.isi.edu:
SIMS NOTIFY: (INSERT ()

(:AND (FINDING ?F)
(FINDING-ID ?F 3)
(PATIENT-NAME ?F "James Wilkie")
(FINDING-LOCATION ?F "left front chest")))

You can stop this notification any time you send SIMS the following message:
(sims-end-notify 'N0TIFICATI0N-12)

You will receive a svmbol T" if the cancellation is successful.

74

3 The Domain Model

A domain model provides the general terminology for a particular application domain. This model is used
to unify the various information sources that are available and provide the terminology for accessing those
information sources. Throughout this section we use a simple example from a medical domain that involves
maintaining patient records and hospital room assignment. The example is very simple in order to provide
a complete, but short, description of the model for the example.

The model is described in the Loom language, which is a member of the KL-ONE family of KR, systems.
In Loom, objects in the world are grouped into "classes" with a set of *rolesr defined on each class. See
Figure 4 for a small fragment of the domain model. Classes are indicated with circles, roles with thin arrows,
and subclass relations with thick arrows. Roles are inherited down to subclasses.

Figure 4: Domain Model Fragment

For example, there is a node in the model representing the class of person, a node representing the
subclass of patient, and a patient-of relation specified between patient and doctor. The definition of
the patient class is shown in Figure 5.

(defconcept Patient
:is-primitive
(:and Person

(:all patient-id String)
(:all patient-of Doctor)
(:all doctor-name String))

:annotations ((key (patient-id))))

(defrelation patient-id
:domain Patient
:range String)

(defrelation patient-of
:domain Patient
:range Doctor)

(defrelation doctor-name
:domain Patient
:range String)

Figure 5: Domain-level definition of the Patient class and corresponding roles

75

Other facts about the domain that are represented in the model include which roles on a class (if any)
constitute key roles. These are roles that uniquely identify instances of the class that forms the domain of
the relation. For example, the patient-id relation is a key for the class patient, as shown in the annotation
field of the definition of patient (Figure 5). Key roles are important and powerful, because they help SIMS
determine how joins can be performed. The model indicates that the patient-id uniquely identifies a patient,
and thus any two related patient classes that both have a patient-id role can be joined over the patient ID
(provided, of course, that they are rendered identically, such as using the same capitalization). See Section 4

for more relevant details.
The entities included in the domain model are not necessarily meant to correspond directly to objects

described in any particular information source. The domain model is intended to be a description of the
application domain from the point of view of someone who needs to perform real-world tasks in that domain

and/or to obtain information about it.
For example, the class of elderly patients, which are patients that are 65 or older, might be particularly

important for a given application, yet there may be no information source that contains only this class of
patients. Nevertheless, we can define this class in terms of other classes for which information is available.
The Loom definition of this class is shown in Figure 6. Notice that the definition of elderly patient requires
defining another class for older-than-65, which in turn includes a simple Lisp function for computing the age

of a patient.

(defconcept Elderly-Patient
:is (:and Patient

(:satisfies (?p)
(:for-some (?dob)

(:and (Patient ?p)
(date-of-birth ?p ?dob)
(older-than-65 ?dob))))))

(defconstant *YEAR* 95)

(defconcept older-than-65 : is
(:and Number

(:predicate (dob)
(<= 65 (- *YEAR*

(- dob
(* 100

(truncate (/ dob 100)))))))))

Figure 6: Example of a Defined Class

When viewing model fragments such as that in Figure 4, one must remember that every fact about the
domain must either be available in some information source or it must be explicitly represented. For example,
consider the relation used-by-patient. It is tempting to believe that it stands for a mapping of hospital-
rooms to the patients in the those rooms. However, all the figure itself expresses is that it is a mapping
between hospital-rooms and patients and that its name is used-by-patient. To define the relationship,
the model definition includes the following Loom statement shown in Figure 7 (which is not in the original
figure because it is difficult to express graphically). It states how the used-by-patient relation is related to
another one, patient-id, which relates hospital-room to the patients in that room. This latter relation is
determined by its interpretation in some database table, as we will see later. This knowledge will, naturally,

be of use in the course of processing this query.
The domain model classes are used as the basis for the query language that enables the user to query

the information source. It is also the language in which one describes the contents of a new information
source to SIMS. This is done by describing how the terms in the information source model relate to the terms
in the domain model (see next section for details). In order to submit a query to SIMS, the user composes a
Loom statement, using terms and roles in the domain model to describe the precise class of objects that are
of interest. If the user happens to be familiar with particular information sources and their, representation,

76

(defrelation used-by-patient
:is (:satisfies (?room ?patient)

(:for-some (?pid)
(:and (Hospital-Roon ?room)

(Patient ?patient)
(pid ?room ?pid)
(patient-id ?patient ?pid)))))

Figure 7: Definition of the used-by-patient Relation

those classes and roles may be used as well. But such knowledge is not required. SIMS is designed precisely
to allow users to query it without such specific knowledge of the data's structure and distribution.

The next section describes how information sources are described in SIMS and how their relationship to
higher-level domain model classes and roles is specified.

77

4 Information Source Models

4.1 Modeling the Contents of an Information Source

Each information source is incorporated into SIMS by modeling the information sources and relating those
models to the domain model. Appropriate classes in the domain model are linked to representations of the
classes of instances contained in the database, or other information source. These mappings include the
information SIMS needs to make decisions about when and whether to retrieve data from the information
source in order to satisfy a user's query.

To illustrate the principles involved in representing an information source within SIMS, let us consider
a table in a relational database. In SIMS, we "translate" the table into the Loom model as follows (see
Figure 8).

*• last-name

irst-näine*«..
—-^ & '•• dateSof-birtH

i

■aci'ctor-natne

us*6fJ/tiy-V ROOM
pati^it:

\ IS-link

ASSETS DB:
ROOM_PATIENT
TABLE

IS-linkT;

::::

GEO DB:
PATIENTS TABLE

::::

^

\ pätients.flrstoanrn
pptients.pafteotid
\ key*

m_patient.room
key

patients.doctor

Figure 8: A Model of a Database Table Embedded in the Domain Model

The table is represented by a class that stands for the rows of the table. One may view each instance
of that class as corresponding to one of the data items conceptually underlying the table in question. For
example, for the Patients table in the GEO database we will create the Loom class Patients whose instances
stand for the patients described in that table. The definition of this class is shown in Figure 9. The new
class is marked as an information source class by specifying the "Info-Source" annotation, which indicates
the source containing the corresponding data. In the figure above we have indicated that by filling in the

78

class in question in grey.

(defconcept Patients
:is-primitive
(:and

(:the Patients.patientid String)
(:the Patients.lastname String)
(:the Patients.firstname String)
(:the Patients.dob Number)
(:the Patients.doctor String))

:mixin-classes (info-source-class)
:annotations ((Info-Source geo)))

Figure 9: Example Source-Level Class Definition

Each column in the table is represented in Loom as a role whose domain is the class standing for
the table, and whose range is the class from which the values in the column in question are drawn. For
example, the patientid column in the Patients table of the GEO database is represented as the Loom role
Patients.patientid, as shown in Figure 10.

(defrelation Patients.patientid
:domain Patients
:range Number)

Figure 10: Example Source-Level Role Definition

Finally, each new source class must be correctly related to a class in the domain model. This is done
by defining an IS-link between the new class and one (or more) in the domain model. An IS-link is
the way of making explicit the semantics of the information in a given information source. In general, the
name of a class is not sufficient to define the semantics of that class. A class may contain names, but the
significance of those names is not self-evident. Are they indeed the names of the individual patients? Or, are
they the names of the closest relative of the patient? Are they the names of the doctor? The possibilities
are endless, and the schema alone is not sufficient to choose one. In order to choose to use this data at
the right time, SIMS must know the precise relationship — and an IS-link to a previously defined domain
model-level class establishes it. Figure 11 shows the IS-links for the Patients class. These definitions specify
that Patients.patientid maps to the patient-id of the patient class, Patients.lastname maps to the last-name
of the patient class, and so on.

(def-IS-links Patients Patient
((Patients.patientid patient-id)
(Patients.lastname last-name)
(Patients.firstname first-name)
(Patients.dob date-of-birth)
(Patients.doctor doctor-name)))

Figure 11: Example IS-links for the Patients class

To summarize, below is the complete list of tasks that need to be performed in the process of creating
an information source model describing a database table:

• Create an "information source class" representing the table.

• Create "information source roles" for each column in the table.

• Create the IS-links between the new classes and roles and the domain model.

79

4.2 Accessing an Information Source

In addition to specifying the contents of an information source, the system also needs to know what informa-
tion sources are currently available and how to access them. This section first describes the basic commands
for declaring information sources and then describes the protocol for communicating with them.

To make an information source available to the system, the name, host, and access function must be
declared in advance. This provides the information required for accessing an information source. The
template for declaring an information source is shown in Figure 12. The <unique identifier> provides a term
for referring to a specific information source. The <name> of an information source might not be unique since
you may have multiple instances of the same information source running on different hosts. The <host>
is the name of the machine where the information source is running. The <initialization function> and
<termination function> are optional arguments that specific functions for starting and stopping information
sources (if SIMS has control over them). The <transaction function> is the function for sending a command
to the information source and will be passed the command that the information source is supposed to process.

(define-information-source <unique identifier>
:name '<information source name>
:host 'information source host>
:init-fn «^initialization function (optional)>
:term-fn <termination function (optional)>
:transaction-fn <transaction function>)

Figure 12: Template for Defining an Information Source

Figure 13 shows an instantiated declaration for a local loom knowledge base.

(define-information-source patient-kb
:name 'geo
:host 'kbl
:init-fn #'(lambda ()(format t "local-geo-kb initialized"))
:term-fn #'(lambda (Hformat t "local-geo-kb terminated"))
:transaction-fn #'(lambda (trans)

(info-source-op #'execute-loom-trans trans
:kb "MANUAL-KB")))

Figure 13: Example Definition of a Loom Knowledge Base

Figure 14 shows an instantiated declaration for an relational database that is accessed through a LIM
wrapper.

(define-information-source patient-db
:name 'geo
:host 'isdlO.isi.edu
:init-fn #'(lambda ()(lim-open-db :db-name 'geo))
:term-fn #'(lambda ()(lim-close-db 'geo))
:transaction-fn #'(lambda (trans)

(info-source-op #'execute-lim-trans trans
:server-name "ISI-GEO-SERVER")))

Figure 14: Example Definition of a Oracle Database using the LIM Wrapper

80

5 Information-Source Wrappers and Communication

Once the SIMS planner has selected the desired sources for a user's query and devised a plan for obtaining
(or updating) the required information, it must communicate with the individual information sources. In
order to modularize this process and cleanly separate query planning from communication issues, SIMS
requires that for each type of information source there exist a wrapper with which it will communicate. The
wrapper must be capable of translating between the SIMS query language and the information source's query
language, as well as between the data output format of the information source and a format appropriate for
SIMS.

This section explains how wrappers are used by SIMS. The communication flow and protocols used will
be described as well.

5.1 Information Source Wrappers

An information source's wrapper will receive as input a restricted form of the SIMS query language (described
in Section 2). The restiction is that all concepts and roles used in the query will be drawn only from that
information source's model. Note that at the time when such communication takes place SIMS has already
determined that the query being sent to the information source can be processed in its entirety by that
source alone.

The wrapper converts a SIMS query into a query in information source's query language. It submits
it to the source and returns to SIMS a list of tuples corresponding to the variable parameters used in the
submitted query.

To standardize the use of information source wrappers, SIMS contains a function, info-source-op that
makes the programmatic interface more standardized and performs the actions necessary to contact a server.
This function creates Loom instances when that will be required for subsequent SIMS processing. It issues
the remote KQML request if the information source is a remote server. Figure 15 illustrates the relationship
between SIMS, info-source-op, the wrappers and the information sources.

SIMS

wrapper-function

transaction for a single IS

location of IS

tuples or Loom instances
«s

info-
source-
op

IS Transactions
Wrapper

Tuples

Information
Source

Figure 15: Communication Between SIMS and Information Sources

info-source-op is called with the following arguments:

(info-source-op wrapper-fn transaction ftkey server-name kb)

wrapper-f n A function that will be called with query as an argument, to produce an appropriate statement
in the information system's query language and satisfy the transaction. This is the actual wrapper for
the information source.

query The query. An expression of the form (<type> <output arg> <query body>) where <type> may
be one of the following: retrieve, insert, delete, or update.

server-name If supplied, this is the name of the remote server, a string. If absent, the query will be executed
on a local information source.

kb If supplied, the name of a knowledge base in which the query should be processed. If absent, the query
will be processed in the current knowledge base.

The function will return a list of tuples which may contain Loom instances if so specified in the <output
args> (see below), info-source-op should be used in the information source declaration for specifying the
transaction-fn function (see Section 4.2).

For example, consider the simple SIMS query:

(sims-retrieve (?id ?fname ?lname)
(:and (Patient ?patient)

(Patient-id ?patient ?id)
(First-name ?patient ?fname)
(Last-name ?patient ?lnane)))

Assuming that this information is available from a single LIM information source, it will ultimately
generate the information source query:

(info-source-op #'execute-lim-trans
'(retrieve (?id ?fname ?lname)

(:and (Patients ?patient)
(Patients.patientid ?patient ?id)
(Patients.firstnaae ?patient ?fname)
(Patients.lastname ?patient ?lname)))

:server-name "ISI-GEO-SERVER")

This is the level at which SIMS interacts with the information source server. It is the task of the
information source's wrapper (in this case #'execute-lira-trans) to process the query beyond this point.

5.1.1 Returning Loom Instances

An added complication may arise when the SIMS query specifies that a Loom instance must be returned,
and not simple data. Loom instances are sometimes required for further SIMS processing. Instances need to
be returned when one of the output arguments in the query is a variable bound to a model concept. That
is the case, for example, for the variable ?patient in the following query:

(sims-retrieve (?patient ?id ?fname ?lname)
(:and (Patient ?patient)

(Patient-id ?patient ?id)
(First-name ?patient ?fna»e)
(Last-name ?patient ?lname)))

As there is no need to build such a capability into each and every wrapper, we have chosen to include
this functionality in info-source-op. This function strips off the concept variables from the output args
list of the query, passes only the reformulated query to the information source wrapper, and later creates
appropriate Loom instances and adds them to the data returned from the wrapper.

5.2 Remote Communication Using KQML

If an information source server is loaded into the running SIMS environment, a straight function call to
the appropriate information source wrapper function is sufficient to process a query. For communication
with servers running on remote hosts, SIMS uses the Knowledge Query and Manipulation Language (KQML)

82

CLIENT

(Application or SIMS)

Facilitator

Figure 16: Communication via KQML

protocol [2]. KQML is a language for communication and knowledge sharing between autonomous programs.
A simplified view of KQML-based communication is presented in Figure 16.

For our purpose. KQML provides two main types of functionality that ease the communication between
clients (application programs using SIMS or SIMS itself) and servers. KQML provides a flexible standard
language for client-server communication that is available for many platforms as well as implementation in
different languages. It also provides a registry of all clients and servers so that a client only need to refer
to the name registered on the registry by the server (which is usually the name of the service provided and
hence more meaningful than just a host address) to communicate with the servers.

The central registry of services in KQML is called the facilitator, and it records all KQML clients and
their addresses. One can query the facilitator for services available as well as other information, we are
mostly interested in the facilitator for providing the addresses of information source servers SIMS need
to communicate with. (This address resolution process happens transparently and does not require user
intervention.) The client and server must both be registered with the facilitator. The global variable
kqml: :*local-facilitator-name* specifies where the facilitator is located and both the client and server
should agree on a facilitator accessible to both. A server registers itself by executing the command:

(KQML:START-KQML <server name»

The <server name> must be unique. Clients are started by invoking (start-kqml-client). This will
register the client using a unique name of the following form, <user><host>-<timestamp>, where timestamp
is gotten from (get-universal-time). Information servers must, of course, also be declared in SIMS, as
described in Section 4.2.

The way to check what is available on a facilitator, or to verify that a service that was registered is up,
is to issue the command (display-kqml-clients) in Lisp. Or using telnet:

> telnet <facilitator host> 5500
...<telnet msgs>...
(ask-all :content "" :reply-with t)
...<list of services registered>...

Note that the KQML clients/servers only contact the facilitator once to verify the existence of a server
and to get its address. The user need not know where a particular server is located but only its name (e.g.,
UNISYS-GEO-SERVER). KQML resolves the location (through the facilitator) transparently and caches
it. The communication protocol used by KQML is TCP/IP. It creates a process that listens on a remote
TCP/IP stream to detect messages from remote hosts.

The facilitator used by KQML must be accessible to both SIMS and to any users of the SIMS system

83

but need not be run on those systems itself. To run a facilitator at a site, execute the following command
in a Unix shell:

kqml/C/bin/facilitator &

The client must know the messages supported by the server as only those can be processed. In KQML
terms, SIMS acts as a mediator between the SIMS client and the information sources. A KQML mediator
receives a request and either delegates it to one or more other servers, or processes it internally/locally (e.g,.
in a local database). Hence the information source server needs to define a handler for the messages it will
support and the client needs to know these messages and their form.

SIMS currently use only the :ASK-0NE KQML performative to communicate between with remote infor-
mation source servers. This minimizes the number of handlers the information source KQML servers need
to define. The handler will receive the following arguments:

(<transaction fun> <query> <kb>)

<query> is of the form (<type> <output args> <query body>). The handler should check that <type>
is one of the supported operations (i.e., retrieve, insert, update, and delete). The <kb> argument specifies
the knowledge base in which to execute the query and is optional.

Here is a simple : ASK-ONE handler that simply evaluates the expression received from the client:
(kqml::define-handler (ask-one)

;; content is expected to be of the form (<exec fn> <query>)
(let* ((content (kqml::msg-content message))

(exec-fn (car content))
(query (cdr content))))

(when (member (car query) '(retrieve update delete insert))
(kqml::make-msg 'reply (apply exec-fn query))))

84

6 Running SIMS

SIMS can be run either by issuing commands to the Lisp listener or using the graphical interface. The
commands that are available in both modes are described in this section.

6.1 Top-Level Commands

The top level commands of SIMS can be classified in six groups: query execution, transactions, active
notification, query set management, information source management, and tracing.

6.1.1 Query Commands

The main command to execute a query is:

(sims-retrieve <parameter-list> <query-exp>)

A complete description of the query syntax is provided in Section 2. A pre-stored query (see query set
management subsection) can be executed with:

(run-query <mim>)

6.1.2 Transaction Commands

SIMS supports insert, delete, and update transactions as explained in Section 2.

(sims-insert <parameter-list> <instance-exp>) Creates new instances in the information sources
with roles and values as given by <instance-exp>, which may be expressed in domain terms.

(sims-delete <parameter-list> <instance-exp>) Deletes the instances from the information sources
specified by the (domain or source) expresion <instance-exp>.

(sims-update <parameter-list> <instance-exp>) Changes values of some roles for the source in-
stances corresponding to the (domain or source) <instance-exp>.

6.1.3 Active Notifications

Clients can ask SIMS to monitor certain data items with specified conditions and actions. SIMS will execute
these actions and send a notification via TCP/IP to the client whenever the data items experience a change
to a state that satisfies the specified conditions.

(sims-begin-notify :concept <concept-name> :when <sims-query> :do <function>
:host <address> :port <port>)
When the <sims-query> is satisfied over the concept
<concept-name>, <f unction> is executed and the results sent to the <port> of the machine iden-
tified by <address>. This functions returns an identifier for each notification currently in the system.

(sims-end-notify <notification-id>) Informs SIMS to stop monitoring the activities specified in the
notification with <notif ication-id>.

6.1.4 Query Set Management

Sometimes it is convenient to have frequently used queries stored in the system. A query set can be predefined
by setting the global variable *queries* to the list of queries. This query set can also used from the graphical
interface described in the next section.

(list-queries) Provides a list of the numbers of predefined queries.

(load-comment <num>) Retrieves the comment for query <num>.

85

(load-query <num>) Retrieves query <num>.

(plan-query <imm>) Generates the plan for performing query <num>), but does not execute it.

(run-query <num>) Executes query <num>.

(run-queries fcoptional <dont-run>) Sequentially executes all queries in »queries*except the numbers
in the <dont-run> list.

The syntax for the query set is:
(setq »queries* '(

(<num> <comment> <query>)
(<num> <comment> <query>)

■))

Here is an example of a query set:
(setq »queries* '(

(1 "List all patients"

(sims-retrieve (?id ?fname ?lname ?dob ?doctor)
(:and (patient ?patient)

(patient-id ?patient ?id)
(first-name ?patient ?fname)
(last-name ?patient ?lname)
(date-of-birth ?patient ?dob)
(doctor-name ?patient ?doctor)))

)

(3 "Which patient is in room 101"

(sims-retrieve (?fname ?lname)
(:and (patient-room ?room)

(room-nm ?room 101)
(used-by-patient ?room ?patient)
(first-name ?patient ?fname)
(last-name ?patient ?lname)))

)
))

6.1.5 Information Source Management

The commands for manipulating the information sources are:

(list-sources) Lists all of the declared information sources.

(available-sources) Lists all of the currently available information sources that the system can access.

(initialize-source <unique-id>) Initializes the given information source.

(initialize-all-sources) Initializes all defined information sources.

(close-source <unique-id>) Closes the given information source.

(close-all-sources) Closes all of the defined information sources.

86

6.1.6 Tracing

In order to facilitate debugging and show the behavior of the system in a greater detail, the following
commands instruct SIMS to print additional information about its processing.

(sims-trace-on) Turns on tracing. SIMS prints additional information on the query planning and exe-
cution, such as plan steps, partial reformulations, information sources accessed, intermediate results,
etc.

(sims-trace-off) Turns off tracing.

(sims-trap-on) SIMS traps all errors (returning nil at the end of execution if the errors prevented the
successful execution).

(sims-trap-off) When an error occurs in the processing, SIMS allows the original error handler to interrupt
the execution. This command is useful when debugging an application.

6.2 The Graphical Interface
This section describes how to interact with SIMS through its graphical user interface.

The graphical interface to SIMS is invoked by calling the function sims, which has the optional keyword
:host, used when the display is different from that of the machine in which SIMS is executed. Examples
of invocation are: (sims), or (sims :host "sunstruck.isi.edu") to display the interface on the machine
sunstruck.isi.edu.

The SIMS interface (see Figure 17) is divided into three main panes: the Interaction/Trace pane (lower
right quadrant), the Query pane (lower left quadrant), and the Graph pane (upper half).

The user issues commands either by selecting a command in the Command menu or typing the command
in the Interaction/Trace pane. Command completion is supported. This is achieved by typing the first few
keystrokes of a command and if unique, a space will complete it. Typically, an interaction sequence will
proceed as follows (note that in the example below the commands can be the menu commands or typed in

ones):

1. Select Load Query and choose a query to solve. The chosen query will be displayed in the Query pane.

2. To produce a plan to solve the query, select Plan query. A graph of the generated plan will be
displayed in the graph pane.

3. To perform the actual retrieval, once a plan has been generated, select Execute Plan. The appropriate
plan graph will be shown in the Graph pane and the state of the execution is indicated by highlighting
the currently executing node in the graph. The final answer will be displayed in the Interaction/Trace

pane.

6.2.1 Graphical Interface Commands

Load Query Brings up a menu of the set of queries currently loaded in the system (in the variable
♦queries*). This is the query that will be used by Plan query and Solve. The selected query
will be displayed in the bottom left pane.

Edit Query Once a query has been input to SIMS, we may want to issue a similar one. It is often faster
to modify a loaded query than to retype one from scratch. This command allows the user to edit the
currently selected query. Several checks are made to verify the consistency of the query. For example,
concepts and roles must be defined in the SIMS knowledge base.

Set Current Query Allows the user to set the query to be processed by the interface by allowing the user
to type it in the interaction/trace pane.

Text Edit Query Starts a text editor (emacs) to freely edit/input a query.

87

 tWCTH ¥ i'~ ifru.

(slmi-ntritvt ?pna«M
(ana (airport Taport)

(mlUtary-transport-aircnft ?aenft)
(country-cod« Taport *TS^
(runway-01 Taport ?iway)
(structura-tength ?n»ay ?rt»tvQth)
(jtruclum-wtdtri ?rway ?iwtdm)
(whiel«-«yp«-nam« ?acratt "C-S")
(lanlnw-mln-rurrway-avg-tinding ?acraft

?landkngth)

Exit Load Prototom Plan Query Exec Plan Solva Edit Query
Command: Plan Query —^^^^^^^^^^^»^™-^^—■—i^—^■■«^-■■-»

1L: Click left to view relormulations; R: Menu.

Figure 17: SIMS graphical interface

88

Plan Query Generates a plan for the current query. The query could have been loaded using Load
Problem, or directly. If a plan is found, its graph will be drawn in the graph pane.

Execute Plan Executes the current plan. The node currently being executed will be highlighted (reverse
video) while executed and un-highlighted when done. The final answer will be displayed in the Inter-
action/Trace pane.

Solve Problem Combines the previous two steps, that is, generates the plan for the currently selected
query and executes it.

Exit Quits SIMS.

Display Answers Displays the results of the last executed query. The user is prompted for the number of
retrieved data items to display - the default is to display all.

! <expr> Allows the evaluation of <expr>, that is. it will behave like a Lisp listener.

6.3 Plan Cost Evaluation

The SIMS architecture allows the user to change the policy of the generation of query access plans to account
for different cost models. The function set-evaluation-function establishes the function that will guide
this generation.

Currently, SIMS provides two functions. The first one, ucpop: :evaluate-plan-cost, generates plans
with the minimum number of steps. The second one, ucpop: :evaluate-plan-cost-by-size, produces
query plans in which the size of intermediate data transmitted from the information sources and processed
in local joins is minimized. It uses a series of traditional database techniques to estimate the size of the
queries. It considers both the expected number of tuples that a query will produce and the projection
attributes. In order to calculate this estimate, it uses some statistics computed from the current contents
of the information sources, such as. number of instances of a concept, number of distinct values (present in
the source) of an attribute, and maximum and minimum values for numeric attributes.

Generally, ucpop: :evaluate-plan-cost-by-size both improves the efficiency of the planning process
(2 to 5-fold speed-up) and the quality of the generated plans. For complex queries this should be the function
of choice. For simple queries the performance of both functions is similar. Nevertheless, size estimation needs
statistics that may or may not be available for some sources. The function gather-stats-by-info-source
will generate a set of files (one per information source) with the computed statistics for the current domain.
These files can then be loaded as desired into SIMS, or incorporated into the defsystem definition of the
current model to be loaded automatically.

In summary,

• to use ucpop: :evaluate-plan-cost (the default), evaluate:

> (set-evaluation-function #'ucpop::evaluate-plan-cost)

• to use ucpop: :evaluate-plan-cost-by-size. evaluate:

> (set-evaluation-function #'ucpop::evaluate-plan-cost-by-size)

to create the statistics files, evaluate:

> (gather-stats-by-info-source)

•

89

7 Trouble Shooting

What do you do once you have built the wrappers for your information sources, defined the domain and
information source models, and submitted the first query to SIMS only to find that it does not work? We
recommend that you first test your system incrementally from the bottom up by testing the wrappers to
the information sources, then testing the source-level queries, and finally testing your domain-level queries.
This section describes each of these in turn:

7.1 Testing the Information-Source Wrappers

Before invoking SIMS, individual wrappers for all of the information sources that are to be used should be
thoroughly tested. Each wrapper should accept a source-level query as input and return a set of tuples that
are the answer to that query. To test the individual wrappers, invoke the access-function for each wrapper
that is defined in Section 4.2. For example the access function for a LIM Oracle database is:
#'(lambda (query)

(info-source-op 'lim::execute-lim-query
(second query)
(third query)))

This access function can be tested directly by defining it as a function:
(defun lim-wrapper (query)

(info-source-op 'lim::execute-lim-query
(second query)
(third query)))

Then call this function on a source-level query:
(lim-orapper '(retrieve (?id ?lname ?dob)

(:and (patients ?patient)
(patients.patientid ?patient ?id)
(patients.lastname ?patient ?lname)
(patients.dob ?patient ?dob))))

(("P1001" "Okumura" 20561) ("P1002" "DeSpain" 120442)
("P1003" "Kumar" 63065) ("P1004" "Cooper" 101030)
("P1005" "Brown" 30152) ("P1006" "Smith " 71570)
("P1007" "Smith" 91851) ("P1008" "Chame " 12745)
("P1009" "Kayano" 111740) ("P1010" "Hamilton" 30359)
("P1011" "Hammer" 63077) ("P1012" "Dosek" 41563)
("P1013" "Wills" 51772) ("P1014" "Richardson" 12268)
("P1015" "Mizushima" 40761))

If this does not return the expected data, one must determine the cause of the problem and fix it before
continuing to the next step.

7.2 Testing the Source-level Queries

Once all of the wrappers are working correctly, it is time to begin testing the source-level queries in SIMS.
The first thing to test are exactly the same source-level queries that were used to test the individual wrappers.
This will ensure that the SIMS model of the information source and the actual information source are in
sync.
(sims-retrieve (?id ?lname ?dob)

(:and (patients ?patient)
(patients.patientid ?patient ?id)
(patients.lastname ?patient ?lname)
(patients.dob ?patient ?dob)))

UCP0P Stats: Initial terms = 3 ; Goals = 4 ; Success (1 steps)
Created 11 plans, but explored only 9
CPU time: 0.0200 sec
Branching factor: 1.111
Working Unifies: 23

90

Bindings Added: 22
(("P1001" "Okumura" 20561) ("P1002" "DeSpain" 120442) ("P1003" "Kumar" 63065) ("P1004" "Cooper" 101030)
("P1005" "Brown" 30152) ("P1006" "Smith " 71570) ("P1007" "Smith" 91851) ("P1008" "Chame " 12745) ("P1009"
"Kayano" 111740) ("P1010" "Hamilton" 30359) ("P1011" "Hammer" 63077) ("P1012" "Dosek" 41563) ("P1013"
"Wills" 51772) ("P1014" "Richardson" 12268) ("P1015" "Mizushima" 40761))

If you get the message:
»Error: No information sources are currently available!

that means that the information sources were not initialized in SIMS. Do so by using the
initialize-information-source commands:
(initialize-information-source 'room-kb)
local-assets-kb initialized
NIL
49
> (initialize-iniormation-source 'patient-kb)
local-geo-kb initialized
NIL
50

One should also test source-level queries in SIMS that span several information sources. After testing all
of the individual source-level concepts, proceed to testing the domain-level queries.

7.3 Testing the Domain-level Queries

If all the models were set up correctly, domain-level queries should execute correctly without any problems.
However, people often make mistakes in constructing the models, resulting in the system failing to produce
the expected results.

Upon discovering a problem, the first thing to do is to examine the relevant portion of the domain
model, source model, and IS-links to see if there are any obvious errors (e.g., missing links, misspellings,
etc). Correct any obvious mistakes and try again. Note that Loom often gets confused if the same concept
is defined twice, so it may be best to restart things after making changes to the model.

If a complex query does not execute correctly, break it up into smaller units and test the individual parts.
That will help to pinpoint the source of the problem more quickly. For example, if the following query fails:
(SIMS-RETRIEVE (7FNAME TLNAME)

(:AND (HOSPITAL-ROOM 7R00M)
(R00M-NM 7R00M 101)
(PID 7R00M ?ID)
(PATIENT 7PATIENT)
(PATIENT-ID 7PATIEHT ?ID)
(FIRST-NAME 7PATIENT 7FNAME)
(LAST-NAME 7PATIENT 7LNAME)))

the next thing to do is to break it into smaller queries:
(SIMS-RETRIEVE (7FNAME 7LNAME)

(:AND (PATIENT 7PATIENT)
(FIRST-NAME 7PATIEHT 7FNAME)
(LAST-NAME 7PATIENT 7LNAME)))

After identifying the simplest query that fails, go back and examine the relevant portions of the model to
see if it is correct. If so, the next step is to see if the system can generate a plan for the query. This is done
using the plan-query command:
(plan-query '(SIMS-RETRIEVE (7FNAME 7LNAME)

(:AND (PATIENT 7PATIENT)
(FIRST-NAME 7PATIENT 7FNAME)
(LAST-NAME 7PATIENT 7LNAME))))

Sources: ((IS-AVAILABLE ASSETS KB2) (IS-AVAILABLE GE0 KB1))

UCP0P Stats: Initial terms = 2 ; Goals = 4 ; Success (2 steps)
Created 29 plans, but explored only 18
CPU time: 0.0600 sec

91

Branching factor: 1.389
Working Unifies: 68
Bindings Added: 65

Step 1 :
(UCPOP::MOVE GEO

KB1
UCPOP::OUTPUT
(RETRIEVE (?FKAME TLNAME)

(:AHD (PATIENTS TPATIENT)
(PATIENTS.FIRSTNAME TPATIENT TFNAME)
(PATIENTS.LASTNAME TPATIENT TLNAME))))

Step 2 :
(UCPOP::SELECT-SOURCE UCPOP::OUTPUT

UCPOP::SIMS
(RETRIEVE (TFNAME TLNAME)

(:AND (PATIENT TPATIENT)
(FIRST-NAME TPATIENT TFNAME)
(LAST-NAME TPATIENT TLNAME)))

(RETRIEVE (TFNAME TLNAME)
(:AND (PATIENTS TPATIENT)

(PATIENTS.FIRSTNAME TPATIENT TFNAME)
(PATIENTS.LASTNAME TPATIENT TLNAME)))

GEO) .
#plan<S=3; 0=0; U=0>

If this fails to generate a plan, then either the required sources are not available or there is still a problem
with the model. If a plan is generated, but the correct data is not returned, then tracing of the execution
needs to be turned on to help pinpoint the error.

(sims-trace-on)

Now rerun the problem query and the execution trace will print out each action as it is executed and the
results of the individual steps. From this trace it should be possible to figure out which step or steps are
failing to return the expected data.

If a steps fails during execution, by default SIMS will simply print the error message and then exit. It
traps these errors so that it can attempt to replan failed actions. However, you can turn the error trapping
off to investigate further using the command:

(sims-trap-off)

Now instead of trapping the error, the system will drop into the error handler and one can proceed to debug
the problem.

If all else fails, create the simplest version of the domain model, source models, and query that reproduce
the problem and send them to sims-bug-reportQisi.edu.

92

8 Installation and System Requirements
The SIMS system currently runs in Common Lisp with MCL 2.0 on the Mac and LUCID 4.0 on Unix. We
expect to have the system running in Allegro on both the PC and Unix environments shortly. SIMS requires
the following software components:

LOOM provides the underlying knowledge representation and programming support. Currently using
version 2.0

KQML provides remote communication support between remote DB servers and SIMS. It can also be used
to communicate between multiple SIMS servers.

CLIM provides the graphical user interface. Currently using version 1.1. This component is optional since
SIMS can be run without the graphical interface.

LIM provides a wrapper for accessing relational databases. Currently using version 1.1 or 1.3. If you have
your own wrapper for your databases, then this is optional.

8.1 Component Structure
Here is our current component and directory structure, which we recommend that users adopt:

defsys - for definitions of various components and systems

planner - for the SIMS planner based on UCPOP

operators - for reformulation operators

qsize-eval-fun - evaluation function for the planner

sims-interface - for the user interface files,

domains - for domain and information source models, and queries,

sockets - TCP/IP interface to SIMS (optional)

8.2 Define, Load and Compile Components
We use the CMU defsystem (this comes with LOOM) to define each subsystem. Each of the above compo-
nent has its own system declaration file, e.g., lim.system, planner.system. If you want to define your own
subsystem, please see the files in the defsys directory for examples.

One can define a component that includes many other components. For example, there is a subsystem
called "BASIC-SIMS" that includes: lim, kqml, planner, operators, and interface.

Before you can use the defsystems, you will need to set two global variables. The first variable.
sims-sys-dir, sets the directory for the location of all of the subsystems:
(setq *sims-sys-dir* "/home/johndoe/sims/sys/")

The second variable, make: : «-central-registry*, sets the location of the defsystem definitions for each
of the components:
(setq make::»central-registry* "/home/sims/sys/defsys/")

One can load a system using the command make: operate-on-system. For example, to load "basic-sims .

you do:
(make:operate-on-system :basic-sims :load)

You can substitute the keyword :load by : compile to compile the system.

93

(make:operate-on-system :basic-sims :compile)

You can also force the system to recompile all of the files in a component by appending the : force
keyword:
(make:operate-on-system :basic-sims :compile :force t)

The typical sequence of loading SIMS is to load the basic-sims first, then load the optional components
that you need, and followed by the domain model and information source models that are specific for your
application.

For example, after loading in the basic-sims system, you would load the example from the manual as
follows:
(make:operate-on-system :manual-kbs :load)

94

9 Coded Example
This section gives the code that implements the example discussed throughout the manual.

;;; domain-model.lisp

;;; Domain model for the example in the SINS user manual

(in-package :sims)

(in-kb 'sims-kb)

;;; define concepts

(defconcept PERSOI
:is-primitive

(: and
(:all LAST-IAHE string)

(:all FIRST-IAHE string)

(:all DATE-OF-BIRTH number))

:annotations ((key (last-name))))

(defconcept PATIEIT

:is-primitive

(:and PERSOI
(:all PATIEIT-ID string)

(:all PATIEIT-OF DOCTOR)

(:all DOCTOR-IAME string))

:annotations ((key (patient-id))))

(defconcept ELDERLY-PATIEIT

:is
(:satisfies (?p)

(:for-som« (?dob)

(:and (PATIEIT ?p)
(DATE-OF-BIRTH ?p ?dob)

(older-than-65 ?dob)))))

(defconstant »YEAR* 95)

(defconcept older-than-65 :is

(:and lumber
(:predicate (dob)

(<= 65 (- »YEAR* (- dob (* 100 (truncate (/ dob 100)))))))))

(defconcept DOCTOR

:is-primitive

(:and PERSOI
(:all DOCTOR-ID string))

:annotations ((key (doctor-id))))

(defconcept ROOK

:is-primitive

(:all ROON-IH number)
:annotations ((key (room-nm))))

95

(defconcept HOSPITAL-ROOH
:is-primitive

(:and ROOM

(rail USED-BY-PATIEIT PATIEIT)
(:all PID string))

:annotations ((key (room-nm))))

(defconcept OFFICE

:is-primitive

(:and ROOM

(:all OFFICE-USER DOCTOR))
annotations ((key (room-nm))))

;;; define relations

(defrelation LAST-IAKE

:domain PERSOI

:range string)

(defrelation FIRST-IAHE

:domain PERSOI

:range string)

(defrelation DATE-OF-BIRTH
:domain PERSOI

:range number)

(defrelation PATIEIT-ID

:domain PATIEIT

:range string)

(defrelation PATIEIT-OF

:domain PATIEIT

:range DOCTOR)

(defrelation DOCTOR-IAHE

:domain PATIEIT

:range string)

(defrelation DOCTOR-ID
:domain DOCTOR

:range string)

(defrelation ROOH-IM

:domain ROOM

:range number)

(defrelation PID

:domain HOSPITAL-ROOM

:range string)

(defrelation USED-BY-PATIEIT :is

(.•satisfies (?room ?patient)

(:F0R-S0HE (?pid)

(:AID (hospital-room ?room)

(patient ?patient)

(pid ?room ?pid)

(patient-id ?patient ?pid)))))

(defrelation OFFICE-USER

:domain OFFICE

:range PERSOI)

96

;;; queries.lisp

;;; Example queries

(in-package "SIMS")

(setq »queries* '(

(1 "List all patients"

(SIMS-RETRIEVE (?id TFIAME TLIAHE ?dob ?doctor)

(:AID (PATIEIT Tpatient)
(patient-id Tpatient ?id)

(FIRST-IAHE TPATIEIT TFIAME)

(LAST-IAHE TPATIEIT TLIAHE)

(date-of-birth Tpatient Tdob)

(doctor-name Tpatient Tdoctor)))

)

(2 "Which patient is in room 101"

(SIMS-RETRIEVE (TFIAME TLIAHE)
(:AID (HOSPITAL-ROOM TROOM)

(ROOM-IM TROOM 101)

(PID TROOM TID)

(PATIEIT TPATIEIT)
(PATIEIT-ID TPATIEIT TID)

(FIRST-IAHE TPATIEIT TFIAME)

(LAST-IAHE TPATIEIT TLIAHE)))

)

(3 "Which patient is in room 101"

(SIMS-RETRIEVE (TFIAME TLIAHE)
(:AID (HOSPITAL-ROOH TROOH)

(ROOM-IH TROOH 101)
(USED-BY-PATIEIT TROOM TPATIEIT)

(FIRST-IAHE TPATIEIT TFIAHE)

(LAST-IAHE TPATIEIT TLIAHE)))

)

(4 "List elderly patients"

(SIMS-RETRIEVE (TFIAME TLIAHE Tdob)
(:AID (ELDERLY-PATIEIT Tpatient)

(FIRST-IAHE TPATIEIT TFIAHE)

(LAST-IAHE TPATIEIT TLIAHE)

(DATE-OF-BIRTH Tpatient Tdob)))

)
))

97

source-model.lisp

;;; Example source model for SIMS manual

(in-package :sims)
(in-kb 'sims-kb)

;; define concepts

(defconcept PATIEITS

:is-primitive

(:and

(:the PATIEITS.patientid String)

(:the PATIEITS.lastname String)

(:the PATIEITS.firstname String)

(:the PATIEITS.dob lumber)

(:the PATIEITS.doctor String))

:mixin-classes (info-source-class)

rannotations ((Info-Source geo)))

(defconcept R00M_PATIEIT
:is-primitive
(:and

(:the ROOM-PATIEIT. room lumber)

(:the ROOMJ>ATIEIT.patient String))

:mixin-classes (info-source-class)

annotations ((Info-Source assets)))

;; define relations

(defrelation PATIEITS.patientid
:domain PATIEITS)

(defrelation PATIEITS.lastname
:domain PATIEITS)

(defrelation PATIEITS.firstname
rdomain PATIEITS)

(defrelation PATIEITS.dob

:domain PATIEITS)

(defrelation PATIEITS.doctor
:domain PATIEITS)

(defrelation ROOMJPATIEIT.room

:domain ROOM-PATIEIT)

(defrelation ROOM-PATIEIT.patient
:domain R00H_PATIEIT)

;; define IS-links

(def-IS-links patients patient

((PATIEITS.patientid PATIEIT-ID)

(PATIEITS.lastname LAST-IAME)

(PATIEITS.firstname FIRST-IAME)

(PATIEITS.dob DATE-OF-BIRTH)

(PATIEITS.doctor DOCTOR-IAME)))

(def-IS-links ROOM-PATIEIT HOSPITAL-ROOM

((ROOMJ'ATIEIT.room ROOM-IM)

(ROOM-PATIEIT.patient PID)))

98

;;; kb-source-defs.lisp

;;; Definition of the Loon Knosledge Base

(in-package :sims)

(in-kb 'sims-kb)

(define-information-source patient-kb
:name 'geo
:host 'kbl
:tenn-fn «'(lambda (Kformat t "local-geo-kb terminated"))
:init-fn «'(lambda (Kformat t "local-geo-kb initialized"))
:transaction-fn «'(lambda (trans) (info-«ource-op «'execute-loom-trans trans)))

(define-inforraation-source room-kb
:name 'assets
:host >kb2
:term-fn «'(lambda (Hforraat t "local-assets-kb terminated"))
:init-fn «'(lambda (Kformat t "local-ass«ts-kb initialized"))
:transaction-fn «'(lambda (trans) (info-source-op »'execute-loom-trans trans)))

(initialize-information-source 'patient-kb)
(initialize-information-source 'room-kb)

99

Knooledge-Base Data

(tell (:about patient3145439 patients

(patients.doctor "Hot2")

(patients.dob 30359)

(patients.firstname "Sheila")

(patients.lastnane "Hamilton")

(patients.patientid "P1010")))

(tell (:about patientsl45431 patients

(patients.doctor "Berson")

(patients.dob 63077)

(patients.firstnarae "Janice")

(patients.lastname "Hammer")

(patients.patientid "P1011")))

(tell (:about patientsl45438 patients

(patients.doctor "Gutierrez")

(patients.dob 40761)

(patients.firstname "Dana")

(patients.lastname "Hizushima")

(patients.patient id "P1015")))

(tell (:about room_patient 145541 room_patient

(roonupatient.patient "P1015")

(room-patient.room 101)))

(tell (:about roomlpatient 145543 room_patient

(room-patient. room 107)))

(tell (:about room-patient 145536 room-patient

(room_patient.patient "P1010")

(room4>atient .room 116)))

(tellm)

100

db-source-def8.lisp

;;; Definition of th« Oracle Databases

»t f

(in-package :sims)

(define-information-source roon-db
:name 'assets
:host 'isdlO.isi.edu
:term-fn »'(lambda (Xlim-close-db 'assets))
:init-fn »'(lambda O(lim-open-db :db-name 'assets))
:transaction-fn »'(lambda (trans)(info-source-op f'execute-lim-trans trans)))

(define-inforaation-source patient-db
:name 'geo
:host 'isdlO.isi.edu
:term-fn »'(lambda ()(lin-close-db 'geo))
:init-fn »'(lambda ()(lim-open-db :db-name 'geo))
:transaction-fn »'(lambda (trans)(info-source-op »'execute-lint-trans trans)))

(initialize-information-source 'ROON-DB)
(initialize-information-source 'PATIEIT-DB)

101

;; lim-source-model.lisp

;; Definition of the databases for the LIM Wrapper

(in-package :sims)

(in-kb 'sdo-kb)

;; define concepts

(defconcept PATIEITS

:is-primitive

(:and Db-Concept

(:the PATIEITS.patientid String)

(:the PATIEITS.lastname String)

(:the PATIEITS.firstname String)

(:the PATIEITS.dob lumber)

(:the PATIEITS.doctor String))

attributes :clos-class

:annotations ((Iulls-Ok-Cols

(PATIEITS.lastname

PATIEITS.firstname
PATIEITS.dob

PATIEITS.doctor))

(Source-Db geo)))

(defconcept ROOH-PATIEIT

:is-primitive

(:and Db-Concept

(:the ROQHJATIEIT.room lumber)

(:the ROOHJ>ATIEIT.patient String))

:attributes :clos-class

:annotations ((Iulls-Ok-Cols

(ROOM JATIEIT. room

ROOM-PATIEIT.patient))

(Source-Db assets)))

;; define relations

(defrelation PATIEITS.patientid

:is-primitive DB-Relation

:domain PATIEITS

:annotations ((Source-Db-Table PATIEITS)

(Source-Db-Column "patientid")

(Source-Db-Datatype String)))

(defrelation PATIEITS.lastname

:is-primitive DB-Relation

:domain PATIEITS

:annotations ((Source-Db-Table PATIEITS)

(Source-Db-Column "lastname")

(Source-Db-Datatype String)))

(defrelation PATIEITS.firstname

:is-primitive DB-Relation

:domain PATIEITS

:annotations ((Source-Db-Table PATIEITS)

(Source-Db-Column "firstname")

(Source-Db-Datatype String)))

(defrelation PATIEITS.dob

:is-primitive DB-Relation

.'domain PATIEITS

:annotations ((Source-Db-Table PATIEITS)

(Source-Db-Column "dob")

102

(Source-Db-Datatype lumber)))

(defrelation PATIEITS.doctor
:is-primitive DB-Relation
:domain PATIEITS
:annotations ((Source-Db-Table PATIEITS)

(Source-Db-Column "doctor")
(Source-Db-Datatype String)))

(defrelation ROOK-PATIEIT.room
:is-primitive DB-Relation
:domain ROOHJATIEIT
:annotation« ((Source-Db-Table ROO«J>ATIEIT)

(Source-Db-Column "room")
(Source-Db-Datatype lumber)))

(defrelation ROOH-PATIEIT.patient
:is-primitive DB-Relation
:domain ROOM-PATIEIT
:annotations ((Source-Db-Table ROOMJ>ATIEIT)

(Source-Db-Column "patient")
(Source-Db-Datatype String)))

(def-key-roles PATIEITS PATIEITS.patientid)
(def-key-roles R0OHJ>ATIEIT ROOM-PATIEIT.room)

103

The relational tables present in the databases have the following definitions:

*** In the "geo" database:

create table patients

(patientid char(7) not null,

lastname char(lS),

firstname char(15),

dob number,

doctor char(15)

);

SQL> describe patients

lame

PATIEITID

LASTIAHE

FIRSTIAME

DOB

DOCTOR

lull? Type

I0T IULL CHAR(7)

CHARC15)

CHARÜ5)

IÜHBER

CHAR(IS)

SQL> select patientid,lastname,firstname, dob, doctor from patients

PATIEIT LASTIAHE FIRSTIAME DOB DOCTOR

P1001 Okumura Benjamin 20S61 Fucich
P1002 DeSpain Ann 120442 Goldman
P1003 Kumar Barbara 63065 Tzartzanis
P1004 Cooper Albert 101030 Jain
PIOOS Brown Anant 301S2 Gonzalez
P1006 Smith Jacqueline 71S70 Casner
P1007 Smith Akitoshi 91851 Tzartzanis
P1008 Chame Amanda 12745 Gonzalez
P10O9 Kayano Lee 111740 Goldman
P1010 Hamilton Sheila 30359 Hotz
P1011 Hammer Janice 63077 Berson
P1012 Dosek Thomas 41563 Woolf
P1013 Wills Daniel 51772 Datta
P1014 Richardson Vance 12268 Vernier
P101S Hizushima Dana 40761 Gutierrez

104

•** In the "assets" database:

create table room-patient;
(room number,
patient char(7)

);

SQL> describe room-patient;
lame lull? Type

ROOH I0T TOLL IUHBER
PATIEIT CHAR(7)

SQL> select • fron ROOH-PATIEIT;

ROOK PATIEIT

101 P101S
102 P1002
103 P1001
104
105 P1008
106 P1011
107
108 P1014
109 P100S
110 P1007
111 P1009
112 P1013
113 P1012
114 P1004
US
116 P1010
117
118
119 P1006
120 P1003

105

10 Additional Reading

Using this manual and following the instructions in it require familiarity with SIMS, as well as with the
Loom knowledge representation language, the LIM/IDI system for accessing remote information sources,
and the KQML transport protocol.

The following papers may be consulted for further information about these programs.

10.1 SIMS

1. Arens, Y., Chee, C.Y., Hsu, C-N., and Knoblock, C.A. 1993. Retrieving and Integrating Data from
Multiple Information Sources. In International Journal of Intelligent and Cooperative Information
Systems. Vol. 2, No. 2. Pp. 127-158.

2. Arens, Y., Knoblock. C.A., and Shen W-M. Query Reformulation for Dynamic Information Integration,
Submitted to Journal of Intelligent Information Systems.

3. Arens, Y. and Knoblock, C.A. 1994. Intelligent Caching: Selecting, Representing, and Reusing Data
in an Information Server. In Proceedings of the Third International Conference on Information and
Knowledge Management (CIKM-94), Gaithersburg, MD.

4. Arens, Y. and Knoblock, C.A. 1992. Planning and Reformulating Queries for Semantically-Modeled
Multidatabase Systems, Proceedings of the First International Conference on Information and Knowl-
edge Management (CIKM-92), Baltimore, MD.

5. Hsu, C-N., and Knoblock, C.A. 1995. Estimating the Robustness of Discovered Knowledge, in Pro-
ceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95),
Montreal, Quebec, Canada.

6. Hsu, C-N., and Knoblock, C.A. 1995. Using inductive learning to gen- erate rules for semantic query
optimization. In Gregory Piatetsky-Shapiro and Usama Fayyad, editors, Advances in Knowledge Dis-
covery and Data Mining, chapter 17. MIT Press.

7. Hsu, C-N., and Knoblock, C.A. 1994. Rule Induction for Semantic Query Optimization, in Proceedings
of the Eleventh International Conference on Machine Learning (ML-95), New Brunswick, NJ.

8. Hsu, C-N., and Knoblock, C.A. 1993. Reformulating Query Plans For Multidatabase Systems. In Pro-
ceedings of the Second International Conference of Information and Knowledge Management (CIKM-
93), Washington, D.C.

9. Knoblock, C.A., Arens, Y. and Hsu, C-N. 1994. An Architecture for Information Retrieval Agents. In
Proceedings of the Second International Conference on Cooperative Information Systems, University
of Toronto Publications, Toronto, Ontario, Canada.

10. Knoblock, C.A. 1995. Planning, Executing, Sensing, and Replanning for Information Gathering. In
IJCAI-95, Montreal, Quebec, Canada.

11. Knoblock, C.A. 1994. Generating Parallel Execution Plans with a Partial-Order Planner. Artificial
Intelligence Planning Systems: Proceedings of the Second International Conference (AIPS94), Chicago,
IL.

These publications, as well as additional information about SIMS, can be accessed through the WWW
at http://www.isi.edu/sims/.

106

10.2 Loom

1. MacGregor, R. A Deductive Pattern Matcher. In Proceedings of AAAI-88, The National Conference
on Artificial Intelligence. St. Paul, MN, August 1988.

2. MacGregor, R. The Evolving Technology of Classification-Based Knowledge Representation Systems.
In John Sowa(ed.), Principles of Semantic Networks: Explorations in the Representation of Knowledge.
Morgan Kaufmann. 1990.

Additional papers and information about Loom can be accessed trough the WWW at the Loom Project
homepage: http://Hww.isi.edu/isd/L00M/L00M-H0ME.html .

10.3 LIM/IDI

1. McKay, D.P., Finin T., and O'Hare, A. The Intelligent Database Interface: Integrating AI and
Database Systems. In A A AI- 90: Proceedings of The Eighth National Conference on Artificial In-
telligence. 1990.

2. Pastor, J. A., McKay. D.P., and Finin T. View-Concepts: KnowledgeBased Access to Databases.
In Proceedings of the First International Conference on Information and Knowledge Management,
Baltimore, MD. 1992.

3. LIM User's Manual. Available from Paramax Systems Corporation by anonymous FTP at
ftp://louise.vf1.paramax.com/.

10.4 KQML

1. Finin, T., Fritzson, R. and McKay, D. A Language and Protocol to Support Intelligent Agent Inter-
operability. In Proceedings of the CE and CALS Washington '92 Conference, June, 1992.

Additional papers and information about KQML can be accessed through the WWW at the KQML
homepage: http://www.cs.umbc.edu/kqml/ .

107

Acknowledgements

We would like to thank the developers of the software systems that we have used extensively in the construc-
tion of SIMS. In particular, thanks to Bob Macgregor and Tom Russ for the Loom knowledge representation
system. Thanks to Don Mckay, Jon Pastor, and Robin McEntire at Paramax/Unisys/Loral for both the
LIM relational database wrapper and their implementation of the KQML language. And thanks to Dan
Weld and Tony Barrett at the University of Washington for the UCPOP planner, which we used to build
the SIMS planner. In addition, thanks to Ping Luo for his testing of and feedback on an earlier version of
this manual.

References

[1] R.J. Brachman and J.G. Schmölze. An overview of the KL-ONE knowledge representation system.
Cognitive Science, 9(2):171-216, 1985.

[2] Tim Finin, Rich Fritzson, and Don McKay. A language and protocol to support intelligent agent inter-
operability. In Proceedings of the CE and CALS. Washington, D.C.. June 1992.

[3] Robert MacGregor. A deductive pattern matcher. In Proceedings of the Seventh National Conference on
Artificial Intelligence, Saint Paul, Minnesota, 1988.

[4] Robert MacGregor. The evolving technology of classification-based knowledge representation systems. In
John Sowa, editor, Principles of Semantic Networks: Explorations in the Representation of Knowledge.
Morgan Kaufmann, 1990.

[5] Donald P. McKay, Timothy W. Finin, and Anthony O'Hare. The intelligent database interface: Integrat-
ing AI and database systems. In Proceedings of the Eighth National Conference on Artificial Intelligence.
Boston, MA. 1990.

108

0ISTRI3UTI0N LIST

addresses number
of copies

RAYMOND A. LIUZZI
ROME LA3QRAT0RY/C3CA
525 BROOKS RO
ROME NY 13441-4505

INFORMATION SCIENCES INSTITUTE
UNIVERSITY OF SOUTHERN CALIFORNIA
4676 ADMIRftLTr WAY
MARINA OEL RAY CA 90292

ROME LA80RATORY/SUI
TECHNICAL LIBRARY
26 ELECTRONIC ?KY
ROME NY 13441-4514

ATTENTION: OTIC-OCC
DEFENSE TECHNICAL INFO C> MT ER
8725 JOHN J.
PT. BELVGIR,

KTNGMAN ROAD, STE 09 44
VA 22060-6213

ADVANCED RESEARCH PROJECTS AG!

3701 MIRTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NC Y

ROME LA80RftT0RY/C3A8
525 3SQQKS RO
ROME NY 13441-4505

r^AVAL WARFARE ASSESSMENT CENTER
SIDcP CQA50)
ATTN: RAYMOND TAOR OS
PO SOX 3000
CORONA CA 9i7ie-eooo

HRIGHT LAaORATORY/AAAI-2» BLDG 635
2135 AVIONICS CIRCLE
WRIGHT-PSTTERSON AF3 QH 4543?-73Cl

;L-1

AFXT ACADEMIC LIBRARY/LOHE
295ö P STREET
AREA 8, SLDS 642
WRIGHT-PATTERSON AF3 OH 45433-7765

WRIGHT LAEORATORY/MLPü

ATTN: R. L. DENISON
3L0G 651
30 05 P STREET, STE 6
WRIGHT-PATTERSON AFS OH 45433-7707

AL/CFHI, BLDG 248
ATTN: &IL3ERT G. KUPERMÄN
2255 H STREET
WRIGHT-PATTERSON AF8 OH 45433-7022

AIR FORCE HUMA^J RESOURCES LAB
TECHNICAL DOCUMENTS CENTER
ÖL AL HSC/HSG, SLD& 190
WRIGHT-PATTERSON AFB OH 45433-7604

ÄUL/LSF
3L0G 1405
60 0 CHENNAULT CIRCLE
MAXWELL AF3 AL 361126424

US ARMY SPACE £ STRATEGIC
DEFENSE COMMAND
CSSO-IM-PA
Po aox 15 00
HUNTSVTLLE AL 35807-3801

^AVAL AIR WARFARE CENTER
6000 E. 21ST STREET
INDIANAPOLIS IN 46219-2130

COMMANDING OFFICER
MCCOSC ROTE DIVISION
ÄTTN: TECHNICAL LIBRARY,CODE 0274
53560 HULL STREET
SAN DIEGO CA 92152-5001

COMMANDER, TECHNICAL LIBRARY
474700D/C0223
NAyAIRWARCENWPNDIV
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6001

DL-2

SPACE S. NAVAL WARFARE SYSTEMS
COMMAND, EXECUTIVE DIRECTOR CPO30A)
ATTN: MR. CARL AN08IAMI
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COMMANDER, SPACE & NAVAL WARFARE
SYSTEMS COMMAND CCOOE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

US ARMY MISSILE COMMAND
AM5MI-RD-CS-R/DOCUMENTS
RSIC 8LQG 4484
REDSTONE ARSENAL AL 35398- 5 241

LOS ALAMOS NATIONAL LABORATORY
PQ SOX 1663
REPORT LIBRARY, P364
LOS ALAMOS NM 37545

AEOC LIBRARY
TECHNICAL REPORTS FILE
100 KIMDEL DRIVE, SUITE C211
ARNOLD AF3 TN 37339-3211

COMMANDER
USAISC
ASHC-IMD-L,
FT HUACHUCA

BLDG 61801
AZ 856.13-5000

AFIWC/MSC
102 HALL SLVO,
SAN ANTONIO TX

STc 315
78243-7016

DIRNSA
R599
980 0 SAVAGE
PT MEADS MO

ROAD
20755-6000

MSA/CSS
Kl
FT McADE MD 20755-6Q0O

DL-3

ESC/IC
50 GRIFFISS STREET
HANSCQM AF8 MA 01731-1619

PHILLIPS LABORATORY
PL/TL CLI3RARY)
5 WRIGHT STREET
HANSCO»t AFB MA 01731-3004

CORPORATION
LADURE

THE HITR
ATTN: E.
0460
202 BURLINGTON RO
3EDF0RD MA 01732

OUSDCP:>/DTSA/DUTO
ATTN: PATRICK G- SULLIVAN, JR.
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

SOFTWARE SNGR'G INST TECH LIBRARY
ATTN: MR DENNIS SMITH
CARNEGIE H5LLQN UNIVERSITY
PITTSBURGH PA 15213-3390

SOFTWARE OPTIONS, INC.
ATTN: MR TOM CHEATHAM
22 HILLIARO STREET
CAMBRIDGE MA 02138

USC-ISI
ATTN: OR PQ3ERT M. SALZER
4676 ÄOMTRALTY WAY
MARINA DEL R^Y CA 90292-6695

KESTREL INSTITUTE
ATTN: 0? COROELL GREEN
1801 PAGE HILL ROA[
PALO ALTO CA 94304

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: ??OF J- A. LASKY
1 LQHQ MEMORIAL OSIVE
P.O. BOX 938 7
ROCHESTER NY 14613-5700

9L-4

WESTINGHOUSE ELECTRONICS CORP
ATTN: m DENNIS BIELÄK
ELECTRONICS SYSTEMS GROUP
P.O. 3QX 746, HAIL STOP 432
SALTIH9RE HO 21203

AFIT/6M6
ATTN: PAUL SAILOR.
WPAFB 3h 45433-6583

MAJOR, USAF

THE MITRE CORPORATION
ATTN: m. EöWARÖ H. 8EKI5LEY
BURLINGTON RÖ/NAIL STOP Ä35Q
BEDFORD MA 01730

ANDERSEN CONSULTING
ATTN: MR MICHAEL E. QESELLIS
100 SOUTH WACKER DRIVE
CHICAGO IL 60606

UNIV OF ILLINOIS, URBANA-CHAMPAIGM
ATTN: MEHQI HARÄNDI
OEPT OF COMPUTER SCIENCES
1304 W. SPRIN6FIEL0/240 DIGITAL LAR
UR3ANÄ IL 61801

HONEYWELL, INC.
ATTN: MR BERT HARRIS
FEDERAL SYSTEMS
7900 WESTPARK DRIVE
«CLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR WILLIAM E. HFFLEY
CARNEGIE-MELLON UNIVERSITY
SEI 2 218
PITTSBURGH PA 15213-38990

UNIVERSITY QF SOUTHERN CALIFORNIA
ATTN: DR W. LEWIS JOHNSON
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
«ARINA DEL REY CA 90292-6695

COLUMBIA UNIV/DEPT. COMPUTER SCIENCE
ATTN: OR GAIL £. KAISER
450 COMPUTER SCIENCE 3LDG
500 WEST 120TH STREET
NEW YORK MT 10027

DL-5

SOFTWARE PRODUCTIVITY CONSORTIUM
ATTN: m ROBERT LAI
2214 ROCK HILL ROAD
HERNDON VA 22Q7Ö

&FIT/ENG
ATTN: OR GARY a. LAMONT
SCHOOL OF ENGINEERING
QEPT ELECTRICAL & COMPUTER ENSRG
WPAFS OH 45433-6583

NSA/QFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9800 SAVAGE ROAD
FT GEORGE G. HSADE MD 20755-6003

ATS.T BELL LABORATORIES
ATTN: MR PETER G. SELFRIOGE
ROOM 3C-441
600 MOUNTAIN AVE
MURRAY HILL NJ 07974

VITRO CORPORATION
ATTN: m ROBERT A. SMALL

14900 GEORGIA AVENUE
SILVER SPRING MO 20906-2972

ODYSSEY RESEARCH ASSOCIATES, IN«
STTN: MS MAUREEN STILLMAN
301A HARRIS 8. DATES DRIVE
ITHACA NY 14350-1313

W8DC/AAAF-3
ATTN: JAMES P, WEBER, CAPT, USAF
AERONAUTICAL SYSTEMS CENTER
yPAFB OH 45433-6543

TEXAS INSTRUMENTS INCORPORATED
äTTN: DR OAVID L. «ELLS
P.O. BOX 655474, HS 233
DALLAS TX 75265

BOEIMS COMPUTER SERVICES
ATTN: OR PHIL NE*IC0M3
MS 7L-64
P.O. 30X 24346
SEATTLE WA 93L24-0346

DL-6

LOCKHEED SOFTWARE TEHNOLO
ATTN: MR HENSON GRAVES
ORG. 96-LO 3LOG 254£
3251 HANOVER STREET
PALO ALTO CA 94304-LL9L

;Y CENTER

REASONING SYSTEMS
ATTN: DP SORDON KOTIK
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

TEXAS A f. M UNIVERSITY
ATTN: OR PAULA MAYER
KNOWLEDGE BASSO SYSTEMS LABORATORY
DEPT OP INDUSTRIAL ENGINEERING
COLLEGE STATION TX 77843

KESTREL DEVELOPMENT CORPORATION
ATTN: OP RICHARD JULLXG
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

ARPA/SISTO
ATTN: OR KIRSTIE BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

LOCKHEED 0/96-10 S/254E
ATTN: JACKY COMBS
3251 HANOVER STREET
PALO ALTO CA 94304-1191

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULBERT
HAIL CODE PT4
HOUSTON TX 77053

SAIC
ATTN: LANCE MILLER
MS Tl-6-3
PO BOX 1303 COR 1710 G30DRIDGE OP)
MCLEAN VA 22102

STERLING I HO INC.
KSC OPERATIONS
ATTN: MARK MAGINN
SEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 13440

OL-7

NAVAL POSTGRADUATE
ÄTTN: 3ftLA 3AMESH
CODE Ä3/RS
ADMINISTRATIVE SC.II
MONTEREY CA 93943

SCHOOL

NCES DEPT

KESTREL INSTITUT*
ATTN: MARIA P?YCE
3260 HILLVISy AVSNU?
PALO ALTO CA 94304

HUGHES AIRCRAFT COMPANY
ATTN: GERRf 8ARKSDALE
P. 0. 8 OX 3 3.10
3L9S 618 m £215
FULLErJTON CA 92634

SCHLUH8ERS5R LABORATORY FOR
COMPUTER SCIENCE

ATTN: DR. GUILLERM3 4RANGO
8311 NORTH FH62Ü
AUSTIN, TX 78720

PARANA* SYSTEMS CORPORATION
ATTN: OON YU
8201 G>
MCLEAN

£ENS80R0
VA 22101

DRIVE, SUITE IQOO

MOTOROLA» INC.
ATTN: MR. ARNOLD PITTLER
3701 ALGONQUIN ROAD, SUTE
ROLLING MEAOOyS» IL 60908

601

DECISION SYSTEMS DEPARTMENT
ATTN: PROF WäLT SCACCHI
SCHOOL OF BUSINESS
UNIVERSITY OF SOUTHERN CALIFOR^II
LOS ANGELES, CA 900 89-1421

SOUTHWEST RESEARCH INSTITUTE
ATTN: BRUCE REYNOLDS
6220 CULE3RA ROAD
SAN ANTONIO, TX 78223-0510

NATIONAL INSTITUTE OF STANDARDS
ftND TECHNOLOGY

ATTN: CHRIS DABROtfSXI
ROOM A266, 3LDG 225
GAITHS^URG HO 20399

DL-3

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE & TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLANS NY 20604

NAVAL TRAINING SYSTEMS CBNTE?
ATTN: ROBERT BREAUX/CODE 252
12350 RESEARCH PARKWAY
ORLAMDO ^L 32326-3224

CENTER FOR EXCELLENCE IN COMPUTER-
AIDED SYSTEMS ENGINEERING

ATTN: PERRY ALEXANDER
2291 IRVING HILL ROAD
LAWRENCE KS 66049

SOFTWARE TECHNOLOGY SUPPORT CENTER
ATTN: MAJ ALAN K. MILLER
OGQEN ALC/TISE
BLOG 100» 3AY G
HILL A*=S» UTAH 34056

DR JAMES ALLEN
COMPUTER SCIENCE 0-
UNIV OF ROCHESTER
WILSON BLVD
ROCHESTER NY 14627

PT/3LDG RM 732

OR YI&AL ARENS
USC-ISI
4676 ADMIRALTY
MARINA DEL RAY

WAY
CA 90292

DR RAY SÄREISS
THE INST. FOR LEARNING
NORTHWESTERN UMIV
1890 MAPLE AVE
EVANSTO« IL 60201

SCIENCES

MR. J£ = F BERLINER
B3N SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02.138

OR MARIE A. 3IENK3HSKI
SRI INTERNATIONAL
333 RAVENSWOOO AV£/£K 337
MENLO PRK CA 94025

OL-9

OR MARK. S. 80ÖDY
HONEYWELL SYSTEMS S RSCH
3660 TECHNOLOGY DRIVE
MINNEAPOLIS «N 55418

CENTER

OR PIESQ P. S0NISS9NE
G£ CORPORATE RESEARCH £
SLOG Kl-RM 5C-3ZA
P. 0. BOX 8
SCHENECTAOY MY 12301

DEVELOPMENT

MR. DAVID BROWN
MITRE
EAGLE CENTER 3, SUIT I
Q'FALLON IL 62269

OR MARK 8URSTEIN
SBN SYSTEMS t TECHNOLOGIES
10 MOÜLTON STREET
CAMBRIDGE MA 02138

OR GREGG COLLINS
LEARNING INST PC

1890 MAPLE AVE
EVANSTON IL 60201

SCIENCES

MR, RANDALL J. CALI5TRI-YEH
ORA CORPORATION
301 DATES DRIVE
ITHACA NY 14850-1313

OR STEPHEN E. CROSS
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

OR THOMAS CHEATHAM
HARVARD UNIVERSITY
OIV OF APPLIED SCIENCE
ftIKENf RH 104
CAMBRIDGE MA 02138

HS. LAURA OAVIS
CODE 5510
NAVY CTR FOR APPLIEO RES IN AI
NAVAL RESEARCH LABORATORY
WASH DC 20375-5337

DL-1'

MS. GLADYS CHQM

COMPUTER SCIENCE OF.PT
UNIV OF"CALIFORNIA

LOS ANGELES CA 90024

DR THOMAS L. DEAN
BROWN UNIVERSITY
DEPT OF COMPUTE« SCIENCi
P.O. BOX 1910
3RQVIÜENCE RI 02912

OR WESLEY CHU
COMPUTER SCIENCE DEPT
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

MR. ROBERTO DESIMONE
SRI INTERNATIONAL <EK335)
333 RAVENSWOOD AVE
MENLO PRK CA 94025

OR PAUL R. COHEN
UNIV OF MASSACHUSETTS
COINS OEPT
LEOERLE GRC
AMHERST MA 01G03

DR JON DOYLE
LABORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

OR. BRIAN DRA83LE
AI APPLICATIONS INSTITUTE
UNIV OF EOINBURGH/80 S. BRIDGE
EDINBURGH SHI LHN
UNITED KINGDOM

MR. SCOTT FOUSE
ISX CORPORATION
4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

MR. STU DRAPER
MITRE
EAGLE CENTER 3, SUIT?
0«FALLOW IL 62269

DL-11

DR MARK J=QX
OEPT 0 INDUSTRIAL ENGRG
UNIV OF TORONTO
4 TÄQDLE CREAK ROAD
TORONTO, ONTARIO, CANADi

MR, GARY EDWARD5
4353 PARK TERRACE DRIVE
WESTLAKE VILLACA 91361

MR. RUSS FREW
GENERAL ELECTRIC
MüöRFSFOWN CORPORATE CENTER
SLDG ATK 145-2
HOORESTQWN NJ 08057

DR MICHAEL FEHLINS
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD CA 94305

MR. RICH FRITZSOH
CENTER OR ADVANCED
UNISYS
P.O. EOX 517
PAOLT PA 19391

INFO TECHNOLOGY

OR KRISTTAN J- HAMMQNO
UNIV OF CHICAGO
COMPUTER SCIENCE DEPT/RY1S5
1100 E. 58TH STREET
CHICAGO IL 60637

RICK HAYES-ROTH
CIHFLEX-TEKNOWLEDGE
1810 EH3ÄRCADERC RO
PALO ALTO CA 94303

OR JIM HENDLER
UNIV OF MARYLAND
OtPT QF COMPUTER SCIENCE
COLLEGE PARK HD 20742

«S. YOLANQA GIL
USC/ISI
4676 ADMIRALTY WAY
MARINA OEL SAY CA 90292

DL-12

OR MAX HER ION
ROCKWELL INTERNATIONAL SCIENCE CTR
444 HIGH STREET
PALO ALTO CA 94301

MR. MORTON A. HIRSCHBERG, DIRECTOR
US ARMY RESEARCH LABORATORY
ATTNI AMSRL-CI-CB
ABERDEEN PROVING GROUND MD
21005-5066

MR. MARK A. HOFFMAN
ISXCORPORATION
1165 N0RTHCHA5E PARKWAY
MARIETTA GA 30067

OR ROM LARSEN
NAVAL CHO, CONTROL £ OCEAN SUR CTR
RESEARCH, DEVELOP, TEST S EVAL DIV
CODE 444
SAN DIEGO CA 92152-5000

OR CRAIG KM03L0CK
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MR. RICHARD LOWE CAP-10)
SRA CORPORATION
2000 15TH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRÄL
83N SYSTEMS 5, TECHNOLOGIES
4315 HANCOCK STREET, SUITE
SAN DIEGO CA 92110

.101

OR JOHN LOWRENCE
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE
333 RAVENSWOOO ÄVE
MENLO PARK CA 94025

CENTER

OR. ALAN MEYPOi-JITZ
NAVAL RESEARCH LA&ORATORY/CODE 5510
4555 OVERLOOK 4VE
WASH üC 20375

iji.-

ALICE «ULVEHILL 1
HITRE CORPORATION
SURLINGTON RD
n/S K-302
BEDFORD «A 01730

OR ROBERT MACGREGOR 1
USC/ISI
4676 ADMIRALTY WAY
«ARINA DEL REY CA 902:92

DR DREW MCDERMOTT 1
YALE COMPUTER SCIENCE ÖEPT
P.O. BOX 2156, YALE STATION
51 PRGPSPECT STREET
MEW HAVEN CT 06520

MS. CECILE PARIS 1
USC/ISI
4676 ADMIRALTY MAY
HARINA DEL RAY CA 90292

Ofi DOUGLAS S«ITH 1
KESTREL INSTITUTE
3260 HILLVIEW AVE
PALO ALTO CA 94304

OR. AUSTIN TÄTE 1
AI APPLICATIONS INSTITUTE
UNIV OP EDINBURGH
30 SOUTH BRIDGE
EDINBURGH EH1 IHN - SCOTLAND

DIRECTOR 1
OARPA/ITO
3701 N. FAIRFAX DR., 7TH FL
ARLINGTON VA 22209-1714

DR STEPHEN F. SMITH
ann.-,TT*-c TiitTiTiiTiryniii

1

SCHENLEY PRK
PITTSBURGH PA 15213

DR. ABRAHAM WAXSMAN
AFOSR/NM
110 DUNCAN AVE., SUITE 3115
B3LLINS AF<* DC 20331-0001

■14

OR JONATHAN P. STILL-MAN
GENERAL ELECTRIC CRD
l RIVER RO, RM K1-5C31A
P. 0. BOX 8
SCHENECTftDY NY 12345

DR EDWARD CT. WALKER
BBN SYSTEMS F» TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE *A 02133

OR BILL SM4RT0UT
USC/ISI
4676 ADMIRALTY
MÄRINA DEL RAY

WAV
CA 90292

GIG WIEDERHOLO
STANFORD UNIVcRSITY
DEPT OF COMPUTER SCIENCE
438 WA3GAR5T JACKS HALL
STANFORD CA 94305-2140

DR KATIA SYCARA/THE ROBOTICS INST
SCHOOL OP COMPUTER SCIENCE
CARNEGIE MELLON UMIV
DOHERTY HALL K« 3325
PITTSBURGH PA 15213

DR DAVID E. WILKINS
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE
333 RAVENSKiQOO AVE
WENLO PARK CA 94025

CENTER

DR. PATRICK WINSTON
MASS INSTITUTE OF TECHNOLOGY
RH N543-817
545 TECHNOLOGY SQUARE
CAMBRIDGE HA 02139

HUA YANG
COMPUTER SCIENCE OEPT
UNIV DP CALIORNIA
LOS ANGELES CA 90024

MR. RICK SCHANTZ
8SN SYSTEMS £ TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02133

DL-15

MR JOHN P. SCHILL 1
ARPA/ISO
3701 H FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OR STEVE ROTH 1
CENTER FOR INTEGRATED MANUFACTURING
THE ROBOTICS INSTITUTE
CARNEGIE M-LLON UNIV
PITTSBURGH PA 15213-3390

OR YOAV SHOHAM 1
STANFORD UNIVERSITY
COMPUTER SCIENCE OEPT
STANFORD CA 94305

MR. MIKE ROUSE 1
AFSC
7800 HAMPTON RD
NORFOLK VA 23511-6097

MS. DAVID E. SfllTH 1
ROCKWELL INTERNATIONAL
444 HISH STREET
PALO ALTO CA 94301

JEFF R0THE*J3FRS
SENIOR COMPUTER SCIENTIST
THE RANO CORPORATION
1700 MIN STREET
SANTA MONICA CA 90407-2138

OR LARRY SIRNSAUM
NORTHWESTERN UNIVERSITY
ILS
1390 MAPLE AVE
EVANSTON IL 60201

MR. L€= ZRHbH
CIMFLEX TECKNOWLEOGE
1810 E*!3ÄRCAR0ER0 RÖ
PALO ALTO CA 94303

®R DICK ESTRADA
B3M SYSTEMS I TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02133

OL-16

MR HARRY FORSOICK
S8N SYSTEMS AND TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02.138

OR MATTHEW L. GINSBERG
CIRL, 1263
UNIVERSITY OF OREGON
EUGENE 05? 97403

MR IRA GOLDSTEIN
OPEN 5N FOUNDATION RESEARCH
ONE CAMBRIDGE CENTER
CAMBRIDGE HA 02142

INST

DR MOISES GOLDSZMIDT
INFORMATION AND DECISION SCIENCES
ROCKWELL INTL SCIENCE CENTER
444 HIGH ST, SUITE 400
PALO ALTO CA 94301

MR JEFF GROSSMAN, CO
NCCOSC ROTE DIV 44
5370 SILVERGATE AVE, ROOM
SAM DIEGO CA 92152-5146

140 5

JAN GÜNTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST, SUITE 380
CAMBRIDGE MA 0213 9

DR LYNETTE HIRSCH MAN
MITRE CORPORATION
202.8URLINGT0N RD
BEDFORD MA 01730

DR ADELE E. HOWE
COMPUTER SCIENCE D^PT
COLORADO STATE UNIVERSITY
FORT COLLINS CO 30523

DR LESLIE PACK KAELSLING
COMPUTER SCIENCE DEPT
3R0WN UNIVERSITY
PROVIDENCE RI 02912

DL-17

OR SUB3ARAO KAMBHAMPATI
OEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPE AZ 85287-5406

MR THOMAS E. KAZMIERCZAK
SRA CORPORATION
331 SALEM PLACE, SUITE 200
FAIRVIEW HEIGHTS IL 62203

OR PRAOEEP K. KHOSLA
ARPA/ITO
3731 N. FAIRFAX OR
ARLINGTON VA 22203

OR CRAI& KNOBLOCK
use-IS I
4676 ADMIRALTY WAT
MARINA OEL RAY CA 90292

OR CARLA SOMES
ROME LA.30RATÖRY/C3CA
525 BROOKS RO
ROME NY 13441-4505

OR MARK T. MAY3URY
ASSOCIATE DIRECTOR OF AI CENTER
ADVANCED INFO SYSTEMS TECH &041
MITRE CORP, 3URLINGTQN RO, MS K~32';>
BEDFORD MA 01730

MR DONALO P. M{
PARAMAX/UMISYS
P 0 30X 517
PAOLI PA 19301

KAY

OR KAREN MYERS
AI CENTER
SRI INTERNTIONAL
333 RAVcNSWOOO
HcNLO PARK CA 940 2 5

OR MARTHA E POLLACK
OEPT -QF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

OL-18

OR RAJ REOOY
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTS3URGH PA 15213

DR EDWINA RISSLAND
DSPT OF COMPUTER & INFO SCIENCi
UNIVERSITY Of MASSACHUSETTS
AMHERST MA 01003

OR MANUELA VELQSQ
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

OR OAN WELD
DEPT OF COMPUTER SCIENCE £, ENS
HAIL STOP FR-35
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

MR JOS ROBERTS
ISX CORPORATION
4301 N FAIRFAX DRIVE,
ARLINGTON VA 22203

SUITE 3 01

COL JOHN A. WARDEN III
ASC/CC
225 CHENNAULT CIRCLE
MAXWELL AF8 AL 36112-6426

OR TOM GARVEY
ARPA/ISQ
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR JOHN N. ENTZHINGER, JR.
ARPA/DIRO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

LT COL ANTHONY WAISANEN, PHD
COMMAND ANALYSIS GROUP
HQ AIR MOBILITY COMMAND
402 SCOTT DRIVE, UNIT 3L3
SCOTT AF8 IL 62225-5307

DL-19

DIRECTOR 1
ARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OFFICE OF THE CHIEF OF NAVAL RSCH 1
ATTN: MR PAUL QUINN
CGOE 311
830 N. QUI^CY STREET
ARLINGTON VA 22 217

33N SYSTEMS AND TECHNOLOGY 1
ATTN: MR MAURICE MCNEIL
9655 GRANITE RIDGE DRIVE, SUITE 245
SAH DIEGO CA 92123

OR JOHN SAL AS IN 1
OARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OR HOWIE SHR03E 1
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OR HOWARD FRANK 1
OARPA/ITO
3701 NORTH FAIRFAX ORIVE
ARLINGTON VA 22203-1714

OR LARRY DRUFFLE 1
SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIV, SCHENLE* ?K
4500 FIFTH AVE, ROOM 2204
PITTSBURGH PA 15213

OR BARRY BOEHM 1
DIR» USC CENTER FOR 5W ENGINEERING
COMPUTER SCIENCE OEPT
UNIV GF SOUTHERN CALIFORNIA
LOS ANGELES CA 90089-0781

OR STEVE CROSS 1
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

DL-20

OR MARK MAYBURY
MITRE CORPORATION
ADVANCED INFO. SITS TECH; G041
BURLINTQN ROÄO, H/5 K-329
BEDFORD MA 01730

MR SCOTT FÖUSE
ISX
4353 PARK TERRACE DRIVE
UESTLAKE VILLAGE C 91361

MR GARY EDWARDS
ISX
433 PARK TERRACE
WE5TLAK£ VILLAGE

DRIVE
CA 91361

OR £0 TALKER
BSN SYSTEMS & TECH
10 MOULTON STREET
CAMBRIDGE MA 02238

CORPORATION!

DR EDWARD PEXGEN3AUM
KOVILSDGE SYSTEMS LA3
STANFORD UNIVERSITY
701 WELCH ROÄO, BUILDING
PALO ALTO CA 94304

JEFFREY D. GRIMSHAW, CAPT , USAF
HQ USAFA/D»=CS
2354 FAIRCHILO DRIVE, SUITE 6K4.!
USAF ACADEMY
COLOROO SPRINGS CO 30340-6234

LEE ERMAN
CIMFLEX TEKNQWLEOGE
1810 EM3ACADER0 ROAD
P.O. SOX 10119
PALO ALTO CA 94303

OR OREN ETZIONI
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

OR GEORGE ERGUSON
UNIVERSITY OF ROCHESTER.
COMPUTER STUDIES ELOGi R«
WILSON 3LVD
ROCHESTER NY 14627

732

SL-21

OR STEVE HANKS
DEPT OP COMPUTER SCIENCE
UNIVERSITY OF WASHINGTON
SEATTLE W& 98195

& EN?

OR WILLIAM S. «ARK
LOCKHEED PALO ALTO ftSCH
DEPT 9 620t SLOG 2 5 4F
3251 HANOVER ST
PALO ALTO CA 94304-1187

LAS

MR DON MORROW
36N SYSTEMS S. TECHOLQGIES
101 «ÜQNG.LOW DR
BELLEVILLE IL 62221

OR KAREN MYERS
AI CENTER
SRI INTERNATIONAL
3 33 RAVENSWOOD
MENLG PARK CA 94025

DR CHRISTOPHER OWENS
B3N SYSTEMS £. TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02133

OR ÄONAM OARWICHE
INFORMATION I DECISION SCIENCES
ROCKWELL INT'L SCIENCE CENTER
1049 CAMINO DOS RIOS
THOUSAND OAKS CA 91360

DR JAIME CARBONNEL
THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
QOHERTY HALL, ROOM 3325
PITTSBURGH PA 15213

NR NORMAN SADEH
'THE RQ3QTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
OOHERTY HALL, ROOM 3315
PITTSBURGH PA 15213

DR JAMES CRAWFORD
CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

OL-22

OR TAIE8 ZNATI
UNIVERSITY QF PITTSBURGH
DEPT OF COMPUTER SCIENCE
PITTSBURGH PA 15260

OR «ARIE OEJARQINS
SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK CA 94025

ROBERT J. KRUCHTEN
HQ AMC/SCA
203 U LÖSEY ST, SUITE 1016
SCOTT AFS It 62225-5223

DR. DAVE GUNNING
OARPA/ISO
3701 NORTH FAIRFAX ÖR.IVE
ARLINGTON yA 22203-1714

MS. LEAH tfONG
NCCOSC ROTE DIVISIION
53560 HULL STREET
SAN DIEGO CA 92152-5001

4U.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-47034

DL-.2 3

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

